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In this paper, we study the matrix denoising model Y = S +X,
where S is a low rank deterministic signal matrix and X is a random
noise matrix, and both are M × n. In the scenario that M and n
are comparably large and the signals are supercritical, we study the
fluctuation of the outlier singular vectors of Y , under fully general
assumptions on the structure of S and the distribution of X. More
specifically, we derive the limiting distribution of angles between the
principal singular vectors of Y and their deterministic counterparts,
the singular vectors of S. Further, we also derive the distribution of
the distance between the subspace spanned by the principal singular
vectors of Y and that spanned by the singular vectors of S. It turns
out that the limiting distributions depend on the structure of the
singular vectors of S and the distribution of X, and thus they are
non-universal. Statistical applications of our results to singular vector
and singular subspace inferences are also discussed.

1. Introduction. Consider an M × n noisy matrix Y modeled as

Y = S +X,(1.1)

where S is a low-rank deterministic matrix with fixed rank r and X is
a real random noise matrix. We assume that S admits the singular value
decomposition

(1.2) S = UDV ∗ =

r∑
i=1

diuiv
∗
i ,
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where D = diag(d1, . . . , dr) consists of the singular values of S and we
assume d1 > . . . > dr > 0; U = (u1, . . . ,ur) ∈ RM×r and V = (v1, . . . ,vr) ∈
Rn×r are the matrices consisting of the `2-normalized left and right singular
vectors. For the noise matrix X = (xij) in (1.1), we assume that the entries
xij ’s are i.i.d. real random variables with

(1.3) Exij = 0, E|xij |2 =
1

n
.

For simplicity, we also assume the existence of all moments, i.e., for every
integer q ≥ 3, there is some constant Cq > 0, such that

(1.4) E|
√
nxij |q ≤ Cq <∞.

This condition can be weakened to the existence of some sufficiently high
order moment. But we do not pursue this direction here. We remark that
although we are primarily interested in the real case, our method also applies
to the case when X is a complex noise matrix.

In practice, S is often called the signal matrix which contains the in-
formation of interest. In the high-dimensional setup, when M and n are
comparably large, we are interested in the inference of S or its left and right
singular spaces, which are the subspaces spanned by ui’s or vi’s, respec-
tively. Such a problem arises in many scientific applications such as matrix
denoising [3, 29], multiple signal classification (MUSIC) [38, 65] and multi-
dimensional scaling [32, 56]. We call the model in (1.1) the matrix denoising
model, which is also known as the signal-plus-noise model in the literature.
We refer to Section 1.2 for more introduction on the application aspects.

We denote the singular value decomposition of Y by

Y = ÛΛV̂ ∗ =
M∧n∑
i=1

√
µiûiv̂

∗
i ,(1.5)

where µ1 ≥ · · · ≥ µM∧n are the squares of the non-trivial singular values,
and ûi’s and v̂i’s are the `2-normalized sample singular vectors. Here Û =
(û1, . . . , ûM ) and V̂ = (v̂1, . . . , v̂n) and Λ is M × n with singular values on
its main diagonal.

In this paper, we are interested in the distributions of the principal left
and right singular vectors of Y and the subspaces spanned by them. On
singular vectors, a natural quantity to look into is the projection of a sample
principal singular vector onto its deterministic counterpart, i.e., |〈ûi,ui〉|
and |〈v̂i,vi〉|, which characterizes the deviation of an original signal from

imsart-aos ver. 2014/10/16 file: ArticleV2BAO-arXiv.tex date: July 7, 2020



SINGULAR VECTOR AND SINGULAR SUBSPACE DISTRIBUTION 3

the noisy one. On singular spaces, the natural estimators for U and V are
their noisy counterparts

Ûr = (û1, . . . , ûr) and V̂r = (v̂1, . . . , v̂r),

respectively, i.e., the matrices consisting of the first r left and right singular
vectors of Y , respectively. To measure the distance between Ûr and U , or
V̂r and V , we consider the following matrix of the cosine principal angles
between two subspaces (see [37, Section 6.4.3] for instance):

cos Θ(V̂r, V ) = diag(σV1 , . . . , σ
V
r ), cos Θ(Ûr, U) = diag(σU1 , . . . , σ

U
r ),

where σVi ’s and σUi ’s are the singular values of the matrices V̂ ∗r V and Û∗rU ,
respectively. Therefore, an appropriate measure of the distance between the
subspaces is L := ‖ cos Θ(U, Ûr)‖2F for the left singular subspace or R :=

‖ cos Θ(V, V̂r)‖2F for the right singular subspace, where ‖ · ‖2F stands for the
Frobenius norm. Note that L and R can also be written as

L :=

r∑
i,j=1

|〈ûi,uj〉|2 =
1

2

(
2r − ‖ÛrÛ∗r − UU∗‖2F

)
,(1.6)

R :=

r∑
i,j=1

|〈v̂i,vj〉|2 =
1

2

(
2r − ‖V̂rV̂ ∗r − V V ∗‖2F

)
.(1.7)

In this paper, we are interested in the following high-dimensional regime:
for some small constant τ ∈ (0, 1) we have

(1.8) M ≡M(n), y ≡ yn :=
M

n
→ c ∈ [τ, τ−1], as n→∞.

Our main results are on the limiting distributions of individual |〈v̂i,vi〉|2
(resp. |〈ûi,ui〉|2) and R (resp. L) when the signal strength, di’s, are super-
critical (c.f. Assumption 2.1). They are detailed in Theorems 2.3, 2.9, after
necessary notations are introduced. In the rest of this section, we review
some related literature from both theoretical and applied perspectives.

1.1. On finite-rank deformation of random matrices. From the theoret-
ical perspective, our model in (1.1) is in the category of the fixed-rank de-
formation of the random matrix models in the Random Matrix Theory,
which also includes the deformed Wigner matrix and the spiked sample co-
variance matrix as typical examples. There are a vast of work devoted to
this topic and the primary interest is to investigate the limiting behavior
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of the extreme eigenvalues and the associated eigenvectors of the deformed
models. Since the seminal work of Baik, Ben Arous and Péché [5], it is
now well-understood that the extreme eigenvalues undergo a so-called BBP
transition along with the change of the strength of the deformation. Roughly
speaking, there is a critical value such that the extreme eigenvalue of the
deformed matrix will stick to the right end point of the limiting spectral
distribution of the undeformed random matrix if the strength of the defor-
mation is less than or equal to the critical value, and will otherwise jump
out of the support of the limiting spectral distribution. In the latter case,
we call the extreme eigenvalue as an outlier, and the associated eigenvector
as an outlier eigenvector. Moreover, the fluctuation of the extreme eigen-
values in different regimes (subcritical, critical and supercritical) are also
identified in [5] for the complex spiked covariance matrix. We also refer to
[6, 12, 13, 4, 23, 3, 28, 7, 54] and the reference therein for the first-order
limit of the extreme eigenvalue of various fixed-rank deformation models.
The fluctuation of the extreme eigenvalues of various models have been con-
sidered in [3, 4, 9, 10, 11, 25, 26, 30, 16, 17, 7, 54, 36, 55, 58, 44]. Especially,
the fluctuations of the outliers are shown to be non-universal for the de-
formed Wigner matrices, first in [25] under certain special assumptions on
the structure of the deformation and the distribution of the matrix entries,
and then in [7] in full generality.

The study on the behavior of the extreme eigenvectors has been mainly
focused on the level of the first order limit [12, 13, 22, 3, 35, 54]. In parallel
to the results of the extreme eigenvalues, it is known that the eigenvec-
tors are delocalized in the subcritical case and have a bias on the direction
of the deformation in the supercritical case. It is recently observed in [15]
that a deformation close to the critical regime will cause a bias even for
the non-outlier eigenvectors. On the level of the fluctuation, the limiting
behavior of the extreme eigenvectors has not been fully studied yet. By
establishing a general universality result of the eigenvectors of the sample
covariance matrix in the null case, the authors of [15] are able to show that
the law of the eigenvectors of the spiked covariance matrices are asymptot-
ically Gaussian in the subcritical regime. More specifically, the generalized
components of the eigenvectors (i.e. 〈v̂i,w〉 for any deterministic vector w)
are χ2 distributed. For spiked Gaussian sample covariance matrices, in the
supercritical regime, the fluctuation of a fixed-dimensional normalized sub-
vector of the outlier eigenvector is proved to be Gaussian in [54], but this
result cannot tell the distribution of 〈v̂i,vi〉. Under some special assump-
tions on the structure of the deformation and the distribution of the random
matrix entries, it is shown in [24] that the eigenvector distribution of a gen-
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SINGULAR VECTOR AND SINGULAR SUBSPACE DISTRIBUTION 5

eralized deformed Wigner matrix model is non-universal in the supercritical
regime. In the current work, we aim at establishing the non-universality for
the outlier singular vectors for the matrix denoising model under fully gen-
eral assumptions on the structure of the deformation S and the distribution
of the random matrix X. This can be regarded as an eigenvector counterpart
of the result on the outlying eigenvalue distribution in [7].

1.2. On singular subspace inference. From the applied perspective, our
model (1.1) appears prominently in the study of signal processing [41, 52],
machine learning [61, 64] and statistics [19, 20, 29, 34]. For instance, in the
study of image denoising, S is treated as the true image [50] and in the
problem of classification, S contains the underlying true mean vectors of
samples [19]. In both situations, we need to understand the asymptotics of
the singular vectors and subspace of S, given the observation Y. In addition,
the statistics R and L defined in (1.7) can be used for the inference of the
structure of the singular subspace of S. We remark that these statistics have
been used extensively to explore the properties of singular subspace. To
name a few, in [40], the authors studied the problem of testing whether the
sample singular subspace is equal to some given subspace; in [21], the authors
studied the eigenvector inference problems for the correlated stochastic block
model; in [39], the authors analyzed the impact of dimensionality reduction
for subspace clustering algorithms; and in [19], the authors studied the high-
dimensional clustering problem and the canonical correlation analysis. In the
high-dimensional regime (1.8), to the best of our knowledge, the distributions
of R and L have not been studied yet in the literature.

In the situation when M is fixed, the sample eigenvectors of XX∗ are
normally distributed [1]. When M diverges with n, many interesting results
have been proposed under various assumptions. One line of the work is to
derive the perturbation bounds for the perturbed singular vectors based
on Davis-Kahan’s theorem. For instance, in [53], the authors improve the
perturbation bounds of Davis-Kahan theorem to be nearly optimal. In [19],
the authors study similar problems and their related statistical applications.
Most recently, in the papers [33, 34, 66], the authors derive the `∞ pertu-
bation bounds assuming that the population vectors were delocalized (i.e.
incoherent). The other line of the work is to study the asymptotic normality
of the spectral projection under various regularity conditions. In such cases,
the singular vectors of S can be estimated using those of Y and some Gaus-
sian approximation technique can be employed. Considering the Gaussian
data samples xi ' N (0,Σ), i = 1, 2, · · · , n and X = (xi), under the assump-
tion that the order of TrΣ

‖Σ‖ is much smaller than n, in [45, 46, 47], the authors
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prove that the eigenvectors of XX∗ are asymptotically normally distributed,
whose variance depends the eigenvectors of Σ. Furthermore, in [62], assuming
that m such random matrices Xi, i = 1, 2, · · · ,m are available, the author
shows that the singular vectors of S can be estimated via trace regression
using matrix nuclear norm penalized least squares estimation (NNPLS). Un-
der the assumption that r4K log3m = o(m), K = max{M,n}, the author
shows that the principal angles of the subspace estimated using NNPLS are
asymptotically normal.

1.3. Organization. The rest of the paper is organized as follows. In Sec-
tion 2, we state our main results and summarize our method for the proofs.
In Section 3, we design Monte Carlo simulations to demonstrate the accu-
racy of our main results and briefly illustrate their applications through a
hypothesis testing problem. In Section 4, we introduce some main technical
results including the isotropic local law and also derive the Green function
representation for our statistics. In Section 5, we prove Theorems 2.3, based
on the recursive estimate in Proposition 5.2. We state more simulation re-
sults, further discussions of statistical applications, the proofs of Theorem
2.9 and some technical lemmas in the supplementary material [7].

2. Main results and methodology. In this section, we state our main
results, and briefly summarize our proof strategy.

2.1. Main results. In this paper, the singular values of S are assumed to
satisfy the following supercritical condition.

Assumption 2.1 (Supercritical condition). There exist a constant C >
0 and a (small) constant δ > 0, such that

y1/4 + δ ≤ dr < · · · < d2 < d1 ≤ C, min
1≤j 6=i≤r

|di − dj | ≥ δ.

Remark 2.2. The first inequality above ensures that the first r singu-
lar values of Y are outliers, and the threshold y1/4 is the analogous BBP
transition point in [5]. The second inequality guarantees that the outliers of
Y are well separated from each other. We also assume that d1, · · · , dr are
bounded by some constant C. All these conditions can be weakened. For
instance, we do allow the existence of the subcritical and critical di’s if we
only focus on the outlier singular vectors. Also, the separation of di’s by
an order 1 distance δ is not necessary. In [15], a much weaker separation of
order n−1/2+ε is enough for the discussion of the eigenvalues. Moreover, we
can also extend our results to the case when d1, · · · , dr diverge with n. But
we do not pursue these directions in the current paper.
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In the sequel, we will only state the results for the right singular vectors
and the right singular subspace. The results for the left ones can be obtained
from the right ones by simply considering the transpose (with a rescaling)
of our matrix model in (1.1). To state our results, we need more notations.
First, we define

p(d) :=
(d2 + 1)(d2 + y)

d2
.(2.1)

For each i ∈ [r], we will write pi ≡ p(di) for short. Recall (1.5). In [3,
Theorem 3.4], it has been shown that pi is the limit of µi. Further, we set

(2.2) a(d) :=
d4 − y

d2(d2 + 1)
.

It has been proved in [3] that a(di) are the limits of |〈vi, v̂i〉|2 respectively
(see Lemma D.1 in [7]). We also denote by κl the l-th cumulant of the
random variables

√
nxij . For a vector w = (w(1), . . . , w(m))T and l ∈ N, we

introduce the notation

sl(w) :=

m∑
i=1

w(i)l.

Set

θ(d) :=
d4 + 2yd2 + y

d3(d2 + 1)2
, ψ(d) :=

d6 − 3yd2 − 2y

d3(d2 + 1)2
,(2.3)

and

VE(d) :=
2

d4 − y

(
2y(y + 1)θ(d)2 − y(y − 1)(5y + 1)

d(d2 + 1)2
θ(d)

+
(d4 + y)(d2 + y)2

d3(d2 + 1)2
ψ(d) +

2y2(y − 1)2

d2(d2 + 1)4

)
.(2.4)

For the right singular vectors, we have the following theorem.

Theorem 2.3 (Right singular vectors). Assume that (1.3), (1.4), (1.8)
and Assumption 2.1 hold. For i ∈ [r], define the random variable

∆i := −2
√
nθ(di)u

∗
iXvi −

2ψ(di)

d2
i

(κ3

n
s1(ui)s1(vi)

)
,(2.5)
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and let Zi ∼ N (0,Vi) be a random variable independent of ∆i, where

Vi := VE(di)−
4

di
θ(di)ψ(di)

( κ3√
n
s3(ui)s1(vi)

)
+

4

di
θ(di)

2
( κ3√

n
s1(ui)s3(vi)

)
+
ψ(di)

2

d2
i

κ4s4(ui) +
yθ(di)

2

d2
i

κ4s4(vi).

Then for any i ∈ [r] and any bounded continuous function f , we have

lim
n→∞

(
Ef
(√
n
(
|〈vi, v̂i〉|2 − a(di)

))
− Ef(∆i + Zi)

)
= 0.

Remark 2.4. In [7], the authors obtain the non-universality for the
limiting distributions of the outliers (outlying eigenvalues) of the deformed
Wigner matrices. The limiting distributions admit similar forms as the lim-
iting distribution for the outlier singular vectors for our models. One might
notice that the third or the fourth cumulants of the entries of the Wigner
matrices are allowed to be different in [7]. An extension along this direction
is also straightforward for our result.

We discuss a few special cases of interest. For simplicity, we assume that
S has rank r = 1 and drop all the subindices.

Remark 2.5. If the entries of
√
nX are standard Gaussian random vari-

ables (i.e. κ3 = κ4 = 0), then ∆ ' N (0, 4θ(d)2) (see Definition 4.9 for the
meaning of '). Hence, we find ∆ + Z is asymptotically distributed as

N
(
0, 4θ(d)2 + VE(d)

)
.

Remark 2.6. If both u and v are delocalized in the sense that ‖u‖∞ =
o(1) and ‖v‖∞ = o(1). Then sl(u) = o(1) and sl(v) = o(1) for l = 3, 4. By
(1.3), (1.4) and the fact ‖u‖2 = ‖v‖2 = 1, we find that E(u∗Xv) = 0 and
E(u∗Xv)2 = n−1. Then we conclude from Lyapunov’s CLT for triangular
array that

∆ ' N
(
−2ψ(d)

d2

(κ3

n
s1(u)s1(v)

)
, 4θ(d)2

)
,(2.6)

and therefore ∆ + Z has asymptotically the same distribution as

N
(
−2ψ(d)

d2

(κ3

n
s1(u)s1(v)

)
, 4θ(d)2 + VE(d)

)
.

The only difference from the Gaussian case is a shift caused by the non-
vanishing third cumulant.
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Remark 2.7. If one of u and v is delocalized, say ‖u‖∞ = o(1), then ∆
still has the limiting distribution in (2.6). Therefore ∆+Z has asymptotically
the same distribution as a Gaussian random variable with mean

−2ψ(d)

d2

(κ3

n
s1(u)s1(v)

)
and variance

4θ(d)2 + VE(d) +
4

d
θ(d)2

( κ3√
n
s1(u)s3(v)

)
+ y

θ(d)2

d2
κ4s4(v).

Remark 2.8. If neither u nor v is delocalized, then ∆ +Z is no longer
Gaussian in general. For example, if u = e1 and v = f1 where e1 and f1

are the canonical basis vectors in RM and Rn respectively, then ∆ + Z is
asymptotically distributed as

−2θ(d)
√
nX11 +N

(
0,VE(d) + κ4

ψ(d)2 + yθ(d)2

d2

)
,

which depends on the distribution of X11 and thus is non-universal.

If the assumptions of Theorem 2.3 hold, we conclude from Remarks 2.6–
2.9 that |〈vi, v̂i〉|2 always has a Gaussian fluctuation if either the entries of
X are Gaussian or one of ui and vi is delocalized in the sense ‖ui‖∞ =
o(1) or ‖vi‖∞ = o(1). In the general setting when the noise matrix is non-
Gaussian, the detailed distribution will rely on both the structure of the
singular vectors and the noise matrix X.

Next, we study the distributions of the right singular space. For two
vectors wa = (wa(1), . . . , wa(m))T , a = 1, 2, we denote

sk,l(w1,w2) :=

m∑
i=1

w1(i)kw2(i)l.

Recall R from (1.7). We have the following theorem.

Theorem 2.9 (Right singular subspace). Assume that (1.3), (1.4), (1.8)
and Assumption 2.1 hold. Let ∆ =

∑r
i=1 ∆i, where ∆i is defined in (2.5).

Let Z be a random variable independent of ∆ with law Z ∼ N (0,V), where

V :=

r∑
i=1

VE(di) + κ4

r∑
i,j=1

(
ψ(di)ψ(dj)

didj
s2,2(ui,uj) + y

θ(di)θ(dj)

didj
s2,2(vi,vj)

)

+
κ3√
n

r∑
i,j=1

4

di
θ(dj)

(
θ(di)s2,1(vi,vj)s1(uj)− ψ(di)s2,1(ui,uj)s1(vj)

)
.
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Then for any bounded continuous function f , we have that

lim
n→∞

(
Ef
(√
n
(
R−

r∑
i=1

a(di)
))
− Ef(∆ + Z)

)
= 0.

2.2. Proof strategy. In this subsection, we briefly describe our proof strat-
egy. We first review the method used in a related work [7], and then we
highlight the novelty of our strategy.

As we mentioned, in [7], the authors derive the distribution of outliers
(outlying eigenvalues) of the fixed-rank deformation of Wigner matrices.
The main technical input is the isotropic local law for Wigner matrices,
which provides a precise large deviation estimate for the quadratic form
〈u, (W − z)−1v〉 for any deterministic vectors u,v. Here W is a Wigner
matrix. It turns out that an outlier of the deformed Wigner matrix can also
be approximated by a quadratic form of the Green function, of the form
〈u, (W − z)−1u〉. So one can turn to establish the law of the quadratic form
of the Green function instead. In [7], the authors decompose the proof into
three steps. First, the law is established for the GOE/GUE, the Gaussian
Wigner matrix, for which orthogonal/unitary invariance of the matrix can
be used to facilitate the proof. In the second step of going beyond Gaussian
matrix, in order to capture the independence of the Gaussian part and the
non-Gaussian part of the limiting distribution of the outliers, the authors
construct an intermediate matrix in which most of the matrix entries are
replaced by the Gaussian ones while those with coordinates corresponding
to the large components of u are kept as generally distributed. The interme-
diate matrix allows one to use the nice properties of the Gaussian ensembles
such as orthogonal/unitary invariance for the major part of the matrix, and
meanwhile keeps the non-Gaussianity induced by the small amount of gen-
erally distributed entries. In the last step, the authors of [7] derive the law
for the fully generally distributed Wigner matrix by further conducting a
Green function comparison with the intermediate matrix.

For our problem, similarly, we will use the isotropic law of the sample
covariance matrix in [14, 43] as a main technical input. It turns out that
for the singular vectors, we can approximately represent

√
n|〈ûi,ui〉| (after

appropriate centering) in terms of a quantity of the form

Qi =
√
n
(

Tr(G(pi))−Π1(pi))Ai + Tr(G′(pi)−Π′1(pi))Bi

)
,(2.7)

where G is the Green function of the linearization of the sample covariance
matrix and Π1 is the deterministic approximation of G; see (4.5) and (4.10)
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for the definitions. Here both Ai and Bi are deterministic fixed-rank ma-
trices. Hence, differently from the outlying eigenvalues or singular values,
the Green function representation of the singular vectors also contains the
derivative of the Green function. More importantly, instead of the three step
strategy in [7], here we derive the law of the above Qi directly for generally
distributed matrix. Recall ∆i defined in (2.5), whose random part is propor-
tional to u∗iXvi, which is simply a linear combination of the entries of X.

Inspired by [7], we decompose ∆i into two parts, say ∆̃i and ∆̂i. The former
contains the linear combination of xk`’s for those indices k, ` corresponding
to the large components uik and vi` in ui and vi. The latter contains the
linear combinations of the rest of xk`’s. Note that ∆̂i is asymptotically nor-
mal by CLT since the coefficients of xk`’s are small. However, ∆̃i may not
be normal. The key idea of our strategy is to show the following recursive
estimate: For any fixed k ∈ N, we have

E(Qi − ∆̃i)
keit∆̃i = (k − 1)ṼiE(Qi − ∆̃i)

k−2eit∆̃i + o(1),(2.8)

for some positive number Ṽi. Choosing t = 0, we can derive the asymptotic
normality of Qi − ∆̃i for (2.8) by the recursive moment estimate. Choosing
t to be arbitrary, we can further deduce from (2.8) that

Eeis(Qi−∆̃i)+it∆̃i = Eeis(Qi−∆̃i)Eeit∆̃i + o(1).

Then asymptotic independence between Qi − ∆̃i and ∆̃i follows. Hence, we
prove both the asymptotic normality and asymptotic independence from
(2.8). The method of using the recursive estimate to get the large deviation
bounds for Green function or some functional of the Green functions has
been previously used in the context of the Random Matrix Theory. For
instance, we refer to [48]. However, as far as we know, it is the first time
to use the recursive estimate to show the normality and the independence
simultaneously for the functionals of the Green functions.

Moreover, we remark that the approach in this paper can also be applied
to derive the distribution of the outlier eigenvectors of the spiked sample
covariance matrix [2] and the deformed Wigner matrix.

Finally, we briefly compare the methods used in this paper and the re-
lated work [24]. In [24], the authors study the distribution of |〈v̂, e1〉|2 of
a deformed Wigner matrix whose deformation is a block diagonal deter-
ministic Hermitian matrix containing one large spike θe1e

∗
1 which creates

one outlier of the deformed Wigner matrix. Here v̂ is the random outlier
eigenvector. By Helffer-Sjöstrand formula, they represent |〈v̂, e1〉|2 in terms
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of an integral (over z) of e∗1(W − z)−1e1. In contrast to our work, the ma-
jor difference in [24] is that they establish the limiting distribution for the
whole process e∗1(W − z)−1e1 in z, and then use functional limit theorem
to conclude the limit of the integral. In our work, relying on the isotropic
law, we first integrate out the contour integral approximately. This results
in the linear combination in (2.7), and then we only need to consider the
joint distribution of the quadratic form of G and G′ at a single point p(di).
Moreover, in [24], the authors decompose the quadratic form e∗1(W −z)−1e1

into two parts using Schur’s complement, where one of them can be proved
to be Gaussian using an extension of the CLT for quadratic forms as in the
previous work [25]. It is worth noticing that the independence between the
Gaussian and non-Gaussian parts follows directly from the special structure
of the model in [24]. However, in [7] and our work, since we do not have
structural assumptions on S, we need to make more dedicated efforts for the
independence (see [7, Proposition 7.12] and Proposition 5.1).

3. Simulations and statistical applications.

3.1. Numerical simulations. In this section, we present some numerical
simulations for our results stated in Section 2.1. For the simulations, we
consider two specific distributions for our noise matrix. We assume that√
nxij ’s are i.i.d. N (0, 1) or i.i.d. with the distribution 1

3δ
√

2+ 2
3δ− 1√

2
. We call

these two types of noise as Gaussian noise and Two-Point noise, respectively.
It is easy to check that the 3rd and 4th cumulants of the distribution 1

3δ
√

2 +
2
3δ− 1√

2
are κ3 = 1√

2
and κ4 = −3

2 . In the sequel, let {ei}Mi=1 and {fj}nj=1 be

the canonical basis of RM and Rn, respectively. Denote by 1m the all-one
vector in Rm.

Assume that S has rank r = 1 and admits the singular value decompo-
sition S = duTv. Set the dimension ratio y = M/n = 0.5. We present the
simulations corresponding to the special cases discussed in Remarks 2.5 -
2.8. Specifically, we consider following four cases: 1. Gaussian noise, u = e1

and v = f1; 2. Two-point noise, u = 1M/
√
M and v = 1/

√
n; 3. Two-point

noise, u = 1M/
√
M and v = f1; 4. Two-point noise, u = e1 and v = f1.

The normalization of
√
n(|〈v̂,v〉|2−a(d)) listed in the above cases are chosen

according to the calculations in Remarks 2.5 - 2.8. For case 4, we further
subtract the non-Gaussian part −2θ(d)

√
nX11 from the statistic. Hence, in

all four cases, we expect that the asymptotic distributions are normal. We
denote the normalized statistics of the above four cases as Rg,Rdt,Rpt and
Rst,, respectively, and we refer to the supplementary material [7, Section A]
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for more details on the definitions.
In Figure S1 of [7], we plot the ECDFs of of Rg,Rdt,Rpt,Rst in sub-

figures (A), (B), (C), (D) respectively, for n = 500 and various values of
d = 2, 3, 5, 10. The distributions of these quantities are fairly close to the
standard normal distribution. In [7, Section A], we also record the probabili-
ties for different quantiles of the empirical cumulative distributions (ECDFs)
of the above statistics, they are fairly close to standard Gaussian even for a
small sample size n = 200.

3.2. Statistical applications. In this section, we will briefly discuss the
applications of our main results to the singular vector and singular sub-
space estimation and inference, and leave more details to the supplementary
material [7].

We start with the estimation part and focus on the right singular vector
and subspace. The estimation of singular vector and subspace is important in
the recovery of low-rank matrix based on noisy observations (see for instance
[19, 21, 29] and reference therein). It is clear that (see Lemma D.1 in [7]) the
sample singular vector is concentrated on a cone with axis parallel to the true
singular vector. The aperture of the cone is determined by the deterministic
function a(d) defined in (2.2). Further, when d increases, the sample singular
vector will get closer to the true singular vector in `2 norm. It can be seen
from the result in Theorem 2.3 that the variance of the fluctuation also
decays when d increases. This phenomenon is recorded in Figure S2 in the
supplementary material [7].

Empirically, it can be seen from Figure S2 in [7] that for a sequence of
y ∈ [ 1

10 , 10], when d > 5, the variance part is already very small and hence
the fluctuation can be ignored. Further, when d > 7.5, we can use the sample
singular vector to estimate the true singular vector since their inner product
is rather close to 1. Finally, note that the noise type will affect the variance
of the fluctuation. Especially when the noise has negative κ3 and κ4, we can
ignore the fluctuation for a smaller value of d. Once the singular vectors are
estimated, the estimation of the singular subspace follows.

Next, we consider the inference of the singular vectors and subspace of S.
Recall the decomposition in (1.2). For brevity, here we focus our discussion
on the inference of V , assuming that U,D and the necessary parameters
of X (e.g. cumulants of the entries of X) are known. In the supplementary
material [7], we will also briefly discuss the possible extension of our results
to adapt to the situation when D and the parameters of X are not known.
Especially, using Theorem 2.3 we can test whether a singular vector vi is
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equal to a given vector vi0, which can be formulated as

H0 : vi = vi0, Ha : vi 6= vi0,(T0)

and we can choose the testing statistic to be

S0 :=
√
n(|〈v̂i,vi0〉|2 − a(di)).

Further, using Theorem 2.9, one can test if the matrix V is equal to a given
matrix, which can be formulated as

H0 : V = V0, Ha : V 6= V0,(T1)

where V0 = (v10, . . . ,vi0) is a given matrix consisting of orthonormal columns.
We can choose the testing statistic to be

S1 =
√
n
( r∑
i,j=1

|〈v̂i,vj0〉|2 −
r∑
i=1

a(di)
)

=
√
n
(1

2

(
2r − ‖V̂rV̂ ∗r − V0V

∗
0 ‖2F

)
−

r∑
i=1

a(di)
)
.(3.1)

We remark here that in some cases like X is Gaussian, we can see from
Theorem 2.9 that S1 is not a good statistic to distinguish V0 from V0O for
some deterministic r × r orthogonal matrix O. Specifically, one cannot tell
if V̂r is the matrix of the singular vectors of the model X + UDV ∗0 or X +
UD(V0O)∗, since V0V

∗
0 = (V0O)(V0O)∗ in (3.1) and the limiting distribution

of S1 does not depend on V when X is Gaussian. Hence, we do not expect
the statistic S1 to be powerful for the test (T1) when the alternative is
of the form V0O in some cases like Gaussian noise. In other words, in this
case, what one can test is if V V ∗ = V0V

∗
0 . Nevertheless, one can still do the

test (T1) by using the testing statistic of the diagonal parts of S1 only, i.e.,

S1d =
√
n
(∑r

i |〈v̂i,vi0〉|2−
∑r

i=1 a(di)
)

. Under the null hypothesis, S1d has

the same distribution as S1 since it will be clear that |〈v̂i,vj0〉|2 is negligible
if i 6= j, in the null case. But note that the limiting distribution of S1d is no
longer invariant under taking right orthogonal transformation for V0. Hence,
it can be used to test if V = V0.

We mention that both (T0) and (T1) could be useful in many scientific
disciplines, especially when the singular vectors of S are sparse and have
practical meanings. For instance, an important goal of the study of gene
expression data for cancer is to simultaneously identify related genes and
subjects grouped together according to the cancer types [49, Section 2]. For
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this purpose, the right singular vectors are used to visualize the gene group-
ing (see Figure 1 of [49]) and the left singular vectors are used to represent
the subject grouping (see Figure 2 of [49]). Other examples include the study
of the nutrition content data of different foods [49] and the mortality rate
data after expanding on suitable basis functions [63, Section 3]. In the litera-
ture, various algorithms have been proposed to estimate the sparse singular
vectors, for instance see [3, 49, 63, 64]. From the statistical perspective, with
the above estimates, it is natural to do inference on the singular vectors. For
instance, for the gene expression data of lung caner, researchers may be
interested in testing whether a certain type of cancer is determined by a
subset of genes and this is related to doing inference on the right singular
vectors and right singular subspace.

Since we assume that U,D and the necessary parameters of X (e.g. cu-
mulants of the entries of X) are known, we can carry out the z-score test
to test H0 in both (T0) and (T1). Due the similarity of (T0) and (T1),
we focus on (T1) and leave the detailed discussions and simulations to the
supplementary material [7].

4. Techincal tools and Green function representations. This sec-
tion is devoted to providing some basic notions and technical tools, which
will be needed often in our proofs for the theorems. The basic notions are
given in Section 4.1. A main technical input for our proof is the isotropic lo-
cal law for the sample covariance matrix obtained in [14, 43]. It will be stated
in Section 4.2. In subsection 4.3, we represent (asymptotically) |〈v̂i,vi〉|2’s
and R (c.f. (1.7)) in terms of the Green function. The discussion is based
on [3], where the limits for |〈ûi,uj〉|2 and |〈v̂i,vj〉|2 are studied. We then
collect a few auxiliary definitions in Section 4.4.

4.1. Basic notions. For a positive integer n, we denote by [n] the set
{1, · · · , n}. Let C+ be the complex upper-half plane. Further, we define the
following linearization for our model

Y(z) := UD(z)U∗ +H(z), z = E + iη ∈ C+,(4.1)

where

U :=

(
U

V

)
, D(z) :=

√
z

(
D

D

)
, H(z) :=

√
z

(
X

X∗

)
.

(4.2)

In the sequel, we will often omit z and simply write Y ≡ Y(z),D ≡ D(z)
and H ≡ H(z) when there is no confusion.
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16 ZHIGANG BAO, XIUCAI DING, KE WANG

We denote the empirical spectral distributions (ESD) of the matricesXX∗

and X∗X by

F1(x) :=
1

M

M∑
i=1

1{λi(XX∗)≤x}, F2(x) :=
1

n

n∑
i=1

1{λi(X∗X)≤x}.

F1(x) and F2(x) are known to satisfy the Marchenko-Pastur (MP) law [51].
More precisely, almost surely, F1(x) converges weakly to a non-random limit
F1y(x) which has a density function given by

ρ1(x) :=

{
1

2πxy

√
(λ+ − x)(x− λ−), if λ− ≤ x ≤ λ+,

0, otherwise,

and has a point mass 1− 1/y at the origin if y > 1, where λ+ = (1 +
√
y)2

and λ− = (1−√y)2. Further, the Stieltjes’s transform of F1y is given by
(4.3)

m1(z) :=

∫
1

x− z
dF1y(x) =

1− y − z + i
√

(λ+ − z)(z − λ−)

2zy
for z ∈ C+,

where the square root denotes the complex square root with a branch cut
on the negative real axis. Similarly, almost surely, F2(x) converges weakly
to a non-random limit F2y(x) which has a density function given by

ρ2(x) :=

{
1

2πx

√
(λ+ − x)(x− λ−), if λ− ≤ x ≤ λ+,

0, otherwise,

and a point mass 1− y at the origin if y < 1. The corresponding Stieltjes’s
transform is

(4.4) m2(z) :=

∫
1

x− z
dF2y(x) =

y − 1− z + i
√

(λ+ − z)(z − λ−)

2z
.

Our estimation relies on the local MP law [57] and its isotropic version [14,
43], which provide sharp large deviation estimates for the Green functions

G(z) = (H − z)−1, G1(z) = (XX∗ − z)−1, G2(z) = (X∗X − z)−1.

Here we recall the definition in (4.2). By Schur complement, one can derive

(4.5) G(z) =

(
G1(z) z−1/2G1(z)X

z−1/2X∗G1(z) G2(z)

)
.
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The Stieltjes transforms for the ESD of XX∗ and X∗X are defined by
(4.6)

m1n(z) =
1

M
TrG1(z) =

1

M

M∑
i=1

Gii(z), m2n(z) =
1

n
TrG2(z) =

1

n

M+n∑
µ=M+1

Gµµ(z).

It is well-known that m1n(z) and m2n(z) have nonrandom approximates
m1(z) and m2(z), which are the Stieltjes transforms for the MP laws defined
in (4.3) and (4.4). Specifically, for any fixed z ∈ C+, the following hold,

m1n(z)−m1(z)
a.s.−→ 0, m2n(z)−m2(z)

a.s.−→ 0.

Furthermore, one can easily check that m1(z) and m2(z) satisfy the following
self-consistent equations (see [2] for instance)

m1(z) +
1

z − (1− y) + zym1(z)
= 0,(4.7)

m2(z) +
1

z + (1− y) + zm2(z)
= 0.(4.8)

We can also derive the following simple relation from the definitions

m1(z) =
y−1 − 1

z
+ y−1m2(z).(4.9)

Next we summarize some basic identities in the following lemma without
proof. They can be checked from (4.3) and (4.4) via elementary calculations.

Lemma 4.1. Denote p ≡ p(x) in (2.1). For any x > y1/4, we have

m1(p) =
−1

x2 + y
, m2(p) =

−1

x2 + 1
,

m′1(p) =
x4

(x2 + y)2(x4 − y)
, m′2(p) =

x4

(x2 + 1)2(x4 − y)
.

Furthermore, denote by T (t) = tm1(t)m2(t). We have

T (p) = x−2, T ′(p) = (y − x4)−1.

In the sequel, we also need the following notion on high probability events.

Definition 4.2 (High probability event). We say that an n-dependent
event E ≡ E(n) holds with high probability if, for any large ϕ > 0,

P(E) ≥ 1− n−ϕ,

for sufficiently large n ≥ n0(ϕ).
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We also adopt the notion of stochastic domination introduced in [31].

Definition 4.3 (Stochastic domination). Let

X = (X(n)(u) : n ∈ N, u ∈ U(n)), Y = (Y(n)(u) : n ∈ N, u ∈ U(n)),

be two families of nonnegative random variables, where U(n) is a possibly
n-dependent parameter set. We say that X is stochastically dominated by Y,
uniformly in u, if for all small ε and large ϕ, we have

sup
u∈U(n)

P
(
X(n)(u) > nεY(n)(u)

)
≤ n−ϕ,

for large enough n ≥ n0(ε, ϕ). In addition, we use the notation X = O≺(Y) if
|X| is stochastically dominated by Y, uniformly in u. Throughout this paper,
the stochastic domination will always be uniform in all parameters (mostly
are matrix indices and the spectral parameter z) that are not explicitly fixed.

4.2. Isotropic local laws. The key ingredient in our estimation is a special
case of the anisotropic local law derived in [43], which is essentially the
isotropic local law previously derived in [14]. Let ⊕ be the direct sum of two
matrices. Set

(4.10) Π1(z) := m1(z)IM ⊕m2(z)In.

We will need the isotropic local law outside the spectrum of the MP law.
For λ+ = (1 + y1/2)2, define the spectral domain

(4.11) So ≡ So(τ) := {z = E+iη ∈ C+ : λ++τ ≤ E ≤ τ−1, 0 ≤ η ≤ τ−1},

where τ > 0 is a fixed small constant. Recall m1n and m2n defined in (4.6).

Lemma 4.4 (Theorem 3.7 of [43], Theorem 3.12 of [14] and Theorem 3.1
of [57]). Fix τ > 0, for any unit deterministic u,v ∈ RM+n, we have

〈u, (G(z)−Π1(z))v〉 = O≺

(√ Imm2(z)

nη

)
,(4.12)

|m1n(z)−m1(z)| = O≺(
1

n
), |m2n(z)−m2(z)| = O≺(

1

n
),(4.13)

uniformly in z ∈ So.
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Remark 4.5. The bounds in (4.13) cannot be directly read from any
of Theorem 3.7 of [43], Theorem 3.12 of [14] or Theorem 3.1 of [57]. In
all these theorems, a weaker bound O≺( 1

nη ) is stated for z both inside and
outside of the support of the limiting spectral distribution. Here since our
parameter z can be real, we use the stronger bound 1

n instead of 1
nη . For

z ∈ So, such a bound follows from the rigidity estimates of eigenvalues in
[57] and the definition of the Stieltjes transform easily. Specifically, by (3.7)
in [57], we know that for a = 1, 2, supt∈R |Fa(t) − Fay(t)| ≺ 1

n , and further
by (3.6) of [57] we know that sup

t∈R:|t|≥2+n−
2
3+ε |Fa(t) − Fay(t)| = 0 with

high probability. Then using the integration by parts to man(z)−ma(z) =∫
(t− z)−1d(Fa(t)− Fay(t)), one can easily conclude the bounds in (4.13).

Following from Lemma 4.4, by further using Cauchy’s integral formula for
derivatives, we have the following uniformly in z ∈ So, for any given l ∈ N,

(4.14) 〈u, (G(l)(z)−Π
(l)
1 (z))v〉 = O≺

(√ Imm2(z)

nη

)
.

Denote by κ = |E − λ+|. We summarize some basic estimates of m1,2(z)
without proof. For any two numbers an and bn (might be n-dependent), we
write an ∼ bn if there exist two positive constants C1 and C2 (independent
of n) such that C1|bn| ≤ |an| ≤ C2|bn|.

Lemma 4.6. The following estimates hold uniformly in z ∈ So,

|m′1,2(z)| ∼ |m1,2(z)| ∼ 1,(4.15)

Imm1(z) ∼ Imm2(z) ∼ η√
κ+ η

.(4.16)

Given any deterministic bounded Hermitian matrix A with fixed rank, it
is easy to see from Lemma 4.4 and Lemma 4.6, the spectral decomposition
and (4.14) that the following estimates hold uniformly in z ∈ So: For any
fixed k, ` ∈ N,

max
µ,ν

∣∣∣(G(l)(z)A)µν − (Π
(l)
1 (z)A)µν

∣∣∣ = O≺

( 1√
n

)
,

TrG(l)(z)A− TrΠ
(l)
1 (z)A = O≺

( 1√
n

)
,

max
µ,ν

∣∣∣(G(k)(z)AG(l)(z))µν − (Π
(k)
1 AΠ

(l)
1 )µν

∣∣∣ = O≺(
1√
n

).(4.17)

In our proof, we will rely on the estimates of powers of G, i.e Gl, l = 2, 3, 4.
We have the following lemma whose proof is stated in [7].
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Lemma 4.7. We have the following recursive relation

(4.18) G2 = 2G′ +
G

z
, G3 = (G2)′ +

G2

z
, G4 =

2

3
(G3)′ +

G3

z
.

Recall Π1 defined in (4.10) and further define

Π2 := 2Π′1 +
1

z
Π1, Π3 := Π′2 +

1

z
Π2, Π4 :=

2

3
Π′3 +

1

z
Π3.(4.19)

With Lemma 4.7, similarly to (4.12) and (4.14), we can get the following
estimates for l = 1, 2, 3, 4,

(4.20) 〈u, (Gl −Πl)v〉 = O≺

( 1√
n

)
,

uniformly in z ∈ So. For brevity, in the sequel, we will use the notation

Ξl ≡ Ξl(z) := Gl(z)−Πl(z), l ∈ N.(4.21)

4.3. Green function representation. In this section, we represent (asymp-
totically) |〈v̂i,vi〉|2’s and R (c.f (1.7)) in terms of the Green function. The
derivation relies on the results obtained in [3]. Recall p(d) in (2.1) and a(d)
in (2.2). For i ∈ [r], define

(4.22) hi(x) =
x4p′(x)p(x)

(x+ di)2
,

and we use the shorthand notation ī = i + r. To state results for the right
singular vectors, we introduce a 2r × 2r matrix function Wi(x) for x > 0,
which has only four non-zero entries given by(

Wi(x)
)
ii

= m2
2(x),

(
Wi(x)

)
ī̄i

=
1

d2
ix
,

(
Wi(x)

)
īi

=
(
Wi(x)

)
īi

= −m2(x)

di
√
x
.(4.23)

We further denote the matrix function

Mi(x) = UWi(x)U∗.(4.24)

With the above notations, we further introduce two (M + n) × (M + n)
matrices

ARi = −d2
i

(
h′i(di)Mi(pi) + hi(di)p

′(di)M
′
i(pi)

)
,

BR
i = −d2

ih(di)p
′(di)Mi(pi).(4.25)
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In light of the definition of U in (4.2), we have

ARi =

(
ωi1uiu

T
i ωi2uiv

T
i

ωi3viu
T
i ωi4viv

T
i

)
, BR

i =

(
$i1uiu

T
i $i2uiv

T
i

$i3viu
T
i $i4viv

T
i

)
.(4.26)

Here we used the notations

ωi1 := −d2
i

(
h′i(di)(Wi(pi))ii + hi(di)p

′(di)(W
′
i (pi))ii

)
,

ωi4 := −d2
i

(
h′i(di)(Wi(pi))̄īi + hi(di)p

′(di)(W
′
i (pi))̄īi

)
,

ωi2 = ωi3 := −d2
i

(
h′i(di)(Wi(pi))īi + hi(di)p

′(di)(W
′
i (pi))īi

)
,

$i1 := −d2
ihi(di)p

′(di)(Wi(pi))ii,

$i4 := −d2
ihi(di)p

′(di)(Wi(pi))̄īi,

$i2 = $i3 := −d2
ihi(di)p

′(di)(Wi(pi))īi.

Recall the notation introduced in (4.21). We have the following lemma
whose proof is stated in [7].

Lemma 4.8. Under assumptions of (1.3), (1.4), (1.8) and Assumption
2.1, we have

|〈vi, v̂i〉|2 = a(di) + Tr
(
Ξ1(pi)A

R
i

)
+ Tr

(
Ξ′1(pi)B

R
i

)
+O≺(

1

n
),

Furthermore, we have

R =
r∑
i=1

a(di) +
r∑
i=1

(
Tr
(
Ξ1(pi)A

R
i

)
+ Tr

(
Ξ′1(pi)B

R
i

))
+O≺(

1

n
).(4.27)

4.4. Auxiliary definitions. It is convenient to introduce the following no-
tion of convergence in distribution.

Definition 4.9 ( [7, Definition 7.3]). Two sequences of random vari-
ables, {Xn} and {Yn}, are asymptotically equal in distribution, denoted as
Xn ' Yn, if they are tight and satisfy

lim
n→∞

(
Ef(Xn)− Ef(Yn)

)
= 0

for any bounded continuous function f .

We also collect some basic results on convergence and equivalence in dis-
tribution in the supplementary material [7], Lemma C.3.

The following notation from [7, Definition 7.11] will be convenient for us
when we replace random variables with their i.i.d copies.
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Definition 4.10. Let {σn} be a sequence of bounded positive numbers.
If Xn and Yn are independent random variables with Yn ' N (0, σ2

n), and if
Sn ' Xn + Yn, we write Sn ' Xn +N (0, σ2

n).

5. Proof of Theorems 2.3. For brevity, in this section, we omit the
subindices of di,ui,vi, ûi, v̂i and write d,u,v, û, v̂ instead. Similarly, we
write the matrices ARi and BR

i (c.f. (4.25)) as A and B, respectively. We
also write m1,2(z) as m1,2 for brevity.

By Lemma 4.8, we can reduce the problem to study

Q ≡ Q(z) :=
√
n
(

Tr
(
Ξ1(z)A

)
+ Tr

(
Ξ′1(z)B

))
,(5.1)

at z = p(d) (c.f.(2.1)).
In the sequel, we will prove the limiting distribution of Q(z) at z = p(d).

The key task is to prove Proposition 5.1 below. In this section, we will
show that Theorem 2.3 follows from Proposition 5.1. Let index i ∈ [M ] and
j ∈ [n]. Denote the shorthand notation

j′ = j +M.(5.2)

For short, we also write
∑

i,j =
∑M

i=1

∑n
j=1 .

In order to state Proposition 5.1, we first introduce some notations. For
a fixed small constant ν > 0, denote by

B(ν) :=
{

(i, j) ∈ [M ]× [n] : |u(i)| > n−ν , |v(j)| > n−ν
}
,

the set of the indices of those compoents with large magnitude. Since u and
v are unit vectors, we have |B(ν)| ≤ Cn4ν for some constant C > 0. Let
S(ν) be the complement of B(ν), i.e.,

S(ν) = ([M ]× [n]) \ B(ν).(5.3)

For brevity, we introduce the notation

(5.4) P(α1, . . . , αm),

to represent the set of all the permutations of (α1, . . . , αm), where αi’s can
be alike. Recall (4.10) and (4.19). We set the deterministic quantity

∆d ≡ ∆d(z) :=− κ3z
3/2

n

∑
i,j

(
(Π1)ii(Π1)j′j′

(
2(Π1AΠ1)ij′ + (Π1BΠ′1)ij′ + (Π′1BΠ1)ij′

)

+
1

2

∑
(a1,a2,a3)∈P(2,1,1)

(Πa1)ii(Πa2)j′j′
(
(Π1BΠa3)ij′ + (Πa3BΠ1)ij′

))
,

(5.5)
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and the random variable

∆r ≡ ∆r(z) :=
√
nz

∑
(i,j)∈B(ν)

xijcij ,(5.6)

where

cij ≡ cij(z) :=−
∑

l1,l2∈{i,j′}
l1 6=l2

(
(Π1AΠ1)l1l2 −

1

2z
(Π1BΠ1)l1l2

+
1

2
(Π1BΠ2)l1l2 +

1

2
(Π2BΠ1)l1l2

)
.(5.7)

Define the M × n matrix function S ≡ S(z) = (sij) with

sij ≡ sij(z) :=
∑

l1,··· ,l4∈{i,j′}
l1 6=l4,l2 6=l3

(
(Π1AΠ1)l1l2(Π1)l3l4 −

1

2z
(Π1BΠ1)l1l2(Π1)l3l4

+
1

2

∑
(a1,a2,a3)∈P(2,1,1)

(Πa1BΠa2)l1l2(Πa3)l3l4

)
.(5.8)

Further, we define the function

V ≡ V (z) := VE(z) + 2
κ3z

3
2

√
n

∑
(i,j)∈S(ν)

cijsij +
κ4z

2

n

∑
i,j

s2
ij + z

∑
(i,j)∈S(ν)

c2
ij ,

(5.9)

where

VE ≡ VE(z) := −
√
z
∑
α=1,2

(
mαa1α +

mα

2
b̃1α +m′αb1α

)
.(5.10)

Here we refer to (S9) in [7] for the definitions of a1α, b1α and b̃1α for α = 1, 2.
With ∆d and ∆r defined in (5.5) and (5.6), we introduce the notation

∆ ≡ ∆(z) := ∆r(z) + ∆d(z)(5.11)

and define

Q ≡ Q(z) := Q(z)−∆(z).(5.12)

Proposition 5.1. Under the assumptions of Theorem 2.3, we have that
Q(pi) and ∆(pi) are asymptotically independent. Furthermore,

(5.13) Q(pi) ' N (0, V (pi)).
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We first show how Proposition 5.1 implies Theorem 2.3.

Proof of Theorem 2.3. By Lemma 4.8 and (5.1),

√
n
(
|〈vi, v̂i〉|2 − a(di)

)
= Q(pi) +O≺(n−

1
2 ).

Here Q(pi) is defined in (5.1) with (A,B) = (ARi , B
R
i ) (c.f.(4.25)). By Propo-

sition 5.1, we have that at z = pi,

Q = ∆d + ∆r +Q ' ∆d +
√
nz

∑
(i,j)∈B(ν)

xijcij +N
(
0, V

)
.

Next, by Central Limit Theorem and Lemma C.3 in [7], one has

√
nz
∑
i,j

xijcij '
√
nz

∑
(i,j)∈B(ν)

xijcij +N
(
0, z

∑
(i,j)∈S(ν)

(cij)
2
)
.

Furthermore, by the definition of S(ν), we notice that

n−1/2
∑

(i,j)∈S(ν)

cijsij = n−1/2
∑
i,j

cijsij +O(n−
1
2

+4ν).

Let C(z) = (cij(z)) with cij(z) defined in (5.7) and recall S(z) from (5.8).
Using Lemma C.3 in [7], we conclude that

Q(pi) ' ∆d(pi) +
√
npiTr(X∗C(pi)) +N (0,V(pi)),

where

V(pi) = VE(pi) + 2
κ3pi

3/2

√
n

Tr
(
C(pi)

∗S(pi)
)

+
κ4pi

2

n
Tr
(
S(pi)

∗S(pi)
)
.

Denote

∆i =
√
npiTr

(
X∗C(pi)

)
+ ∆d(pi)

and Zi ∼ N (0,V(pi)), which is independent of ∆i. Next, plugging z = pi into
(5.5), (5.7), (5.8), using Lemma 4.1 and taking into account the definitions
of ARi , B

R
i in (4.25), we find that

∆i = −
√
n

2(d4
i + 2yd2

i + y)

d3
i (d

2
i + 1)2

u∗iXvi −
2(d6

i − 3yd2
i − 2y)

d5
i (d

2
i + 1)2

(κ3

n

∑
k,l

ui(k)vi(l)
)
.
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The variance V(pi) is the sum of

2
κ3√
n
p

3/2
i Tr

(
C(pi)

∗S(pi)) +
κ4

n
p2
iTr
(
S(pi)

∗S(pi)
)

= −4(d4
i + 2yd2

i + y)(d6
i − 3yd2

i − 2y)

d7
i (d

2
i + 1)4

( κ3√
n

∑
k,l

ui(k)3vi(l)
)

+
4(d4

i + 2yd2
i + y)2

d7
i (d

2
i + 1)4

( κ3√
n

∑
k,l

ui(k)vi(l)
3
)

+
(d6
i − 3yd2

i − 2y)2

d8
i (d

2
i + 1)4

(
κ4

∑
k

ui(k)4
)

+
(d4
i + 2yd2

i + y)2

d8
i (d

2
i + 1)4

(
κ4yn

∑
l

vi(l)
4
)

and

VE(pi) =
2

d4
i − y

(
2y(y + 1)

(d4 + 2yd2 + y

d3(d2 + 1)2

)2 − y(y − 1)(5y + 1)

di(d2
i + 1)2

(d4 + 2yd2 + y

d3(d2 + 1)2

)
+

(d4
i + y)(d2

i + y)2

d3
i (d

2
i + 1)2

(d6 − 3yd2 − 2y

d3(d2 + 1)2

)
+

2y2(y − 1)2

d2
i (d

2
i + 1)4

)
.

The last expression is obtained by using the definitions of a1α, b1α and b̃1α

for α = 1, 2 in (S9) of [7] and performing tedious yet elementary calculations.
Recall (2.3). The conclusion of Theorem 2.3 follows immediately by rewriting
∆i and V(pi) in terms of θ(di) and ψ(di).

The rest of this section is devoted to the proof of Proposition 5.1. Our
proof relies on the cumulant expansion in Lemma C.1 of [7], where we need
to control the expectation. Throughout the proof, we will frequently use the
estimates in (4.17). These estimates hold with high probability, which do
not yield bounds for the expectations directly. In order to translate the high
probability bounds into those for the expectations, one needs a crude deter-
ministic bound for the Green function on the bad event with tiny probability.
To this end, we will work with a slight modification of the real z = p(d) for
Green function. Specifically, in the proof of the following Proposition 5.2,
we will also use the parameter

(5.14) z = p(d) + in−C ,

for a large constant C. On the bad event, we will use the naive bound
of the Green function ‖G‖ ≤ NC , which will be compensated by the tiny
probability of the bad event. At the end, by the continuity of G(z̃) at z̃ away
from the support of the MP law, it is (asymptotically) equivalent to work
with (5.14), for the proof of Proposition 5.1. We first claim that it suffices
to establish the following recursive estimate.
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Proposition 5.2. Suppose that the assumptions of Theorem 2.3 hold.
Let z0 = p(d) and z be defined in (5.14). We have

EQ(z)eit∆(z0) = O≺(n−
1
2

+4ν),(5.15)

and for any fixed integer k ≥ 2,

(5.16) EQk(z)eit∆(z0) = (k − 1)V EQk−2(z)eit∆(z0) +O≺(n−
1
2

+4ν).

The proof of Proposition 5.2 is our main technical task, which will be
stated in Section E of [7]. Now we first show the proof of Proposition 5.1
based on Proposition 5.2.

Proof of Proposition 5.1. Recall the following elementary bound, for
any x ∈ R and sufficiently large N ∈ N, we have

(5.17)

∣∣∣∣eix −
N∑
k=0

(ix)k

k!

∣∣∣∣ ≤ min

{
|x|N+1

(N + 1)!
,
2|x|N

N !

}
.

First, we write Q(z) = QR(z) + iQI(z), where QR(z) and QI(z) stand for
the real and imaginary parts of Q(z) respectively. According to the choice
of z in (5.14), we have the deterministic bound |QI(z)| ≤ NC for some large
positive constant C. Moreover, by continuity of the Green function and the
Stieltjes transform, one can easily check that |QI(z)| ≤ N−C

′
, for some large

positive constant C ′ with high probability. Using the small bound N−C
′

on
the high probability event and the large deterministic bound NC on the tiny
probability event, one can easily derive from (5.15) and (5.16) that

EQR(z)eit∆(z0) = O≺(n−
1
2

+4ν),(5.18)

EQkR(z)eit∆(z0) = (k − 1)V EQk−2
R (z)eit∆(z0) +O≺(n−

1
2

+4ν).(5.19)

For any s, t ∈ R, by (5.17), we have

EeisQR(z)+it∆(z0) =

2N−1∑
k=0

(is)k

k!
EQkR(z)eit∆(z0) +O

(
s2N

(2N)!
EQ2N

R (z)

)
.

(5.20)

For the error term on the right side of (5.20), using (5.19) recursively for
t = 0, we first find

EQ2N
R (z) = (2N − 1)!!V N +O≺(n−

1
2

+4ν).
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Thus, for arbitrarily small ε > 0, by taking N sufficiently large, we have
(2N−1)!!V N

(2N)! < ε and it follows that∣∣∣∣∣EeisQR(z)+it∆(z0) −
2N−1∑
k=0

(is)k

k!
EQkR(z)eit∆(z0)

∣∣∣∣∣ < ε+O≺(n−
1
2

+4ν).(5.21)

Using (5.19), we get the following estimate

(5.22)
2N−1∑
k=0

(is)k

k!
EQkR(z)eit∆(z0) =

N−1∑
k=0

(is)2k

(2k)!!
V kEeit∆(z0) +O≺(n−

1
2

+4ν).

Next, combing (5.22) with the fact

exp(
x2

2
) =

∞∑
k=0

x2k

(2k)!!
,

together with (5.21), we conclude that

(5.23)
∣∣∣EeisQR(z)+it∆(z0) − e−

1
2
V s2Eeit∆(z0)

∣∣∣ < 2ε+O≺(n−
1
2

+4ν).

The asymptotic independence of QR(z) and ∆(z0) is a consequence of (5.23)
and the fact ε is arbitrarily small. (5.13) can be proved by setting s = 0.
Although Proposition 5.2 is proved under the choice (5.14), by continuity of
G outside of the support of MP law, we know Q(z0) = QR(z) + O(N−C

′
)

with high probability for some positive constant C ′. This concludes the proof
of Proposition 5.1.
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SINGULAR VECTOR AND SINGULAR SUBSPACE DISTRIBUTION 1

Supplementary material to “Singular vector and
singular subspace distribution for the matrix

denoising model”

This file contains detailed simulation results, further discussions on sta-
tistical applications, auxiliary lemmas, the proofs of Theorem 2.9 and some
technical lemmas of the paper [1].

A. Detailed simulation results. In this section, we state detailed
simulation results for Section 3.1 of [S1].
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(a) ECDF of Rg with Gaussian
noise.

0.00

0.25

0.50

0.75

1.00

−2.5 0.0 2.5

N(0,1)
d=2
d=3
d=5
d=10

(b) ECDF of Rdt with Two-
Point noise and delocalized sin-
gular vectors.
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(c) ECDF of Rpt with Two-Point
noise and delocalized left singular
vector and sparse right singular
vector.
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(d) ECDF of Rst with Two-Point
noise and sparse singular vectors.

Fig S1: Plots of the ECDFs of Rg,Rdt,Rpt,Rst.

Case 1. Gaussian noise. Recall the discussion in Remark 2.5. In this case,
the structure of the singular vectors does not play a role. We choose u = e1
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2 ZHIGANG BAO, XIUCAI DING, KE WANG

and v = f1. Denote by

Rg :=

√
n

σ

(
|〈v̂,v〉|2 − a(d)

)
,

where

(S1) σ2 = (8d12+24d10+26d8+20d6+15d4+8d2+2)/(2d4(2d4−1)(d2+1)4).

The conclusion is that Rg is asymptotically N (0, 1).
Case 2. Two-point noise and both singular vectors of S are delocalized.
In the presence of Two-Point noise, the structure of the singular vectors
will influence the distributions. We consider the case that both u and v
are delocalized, corresponding to the discussion in Remark 2.6. Let u =
1M/
√
M and v = 1n/

√
n. Then

Rdt :=
1

σ

(√
n(|〈v̂,v〉|2 − a(d)) +

d6 − 1.5d2 − 1

d5(d2 + 1)2

)
is asymptotically N (0, 1), where σ is defined in (S1).
Case 3. Two-point noise and one of the singular vectors of S is delocalized.
We set u = 1M/

√
M and v = f1. From Remark 2.7, we know that the

random variable

Rpt :=

√
n

σt

(
|〈v̂,v〉|2 − a(d)

)
is asymptotically N (0, 1), where

σ2
t = σ2 +2(d4 +d2 +0.5)2/(d7(d2 +1)4)−0.75(d4 +d2 +0.5)2/(d8(d2 +1)4).

Case 4. Two-point noise and both singular vectors of S are sparse (localized).
Let u = e1 and v = f1. From the proof of Proposition 5.1, especially the
decomposition in (5.11), by setting

Rst :=
1

σs

(√
n
(
|〈v̂,v〉|2 − a(d)

)
− 2
√
n

d3
X11

)
,

with

σ2
s = (d16+4d14+6d12+d10−6d8−2d6+6.5d4+6.25d2+1.6875)/(d8(d2+1)4(2d4−1)),

we have that Rst is asymptotically N (0, 1).
In Table 1-4, we record the probabilities for different quantiles of the

empirical cumulative distributions (ECDF) of Rg,Rdt,Rpt,Rst respectively.
We choose n = 200 or 500. For each choice of n, we take d = 2, 3, 5, 10.
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SINGULAR VECTOR AND SINGULAR SUBSPACE DISTRIBUTION 3

The first column corresponds to the theoretical quantile probabilities for
a standard normal distribution. Each simulation is obtained with 10, 000
repetitions. From Table 1, we observe that Rg is fairly close to standard
Gaussian even for a small sample size n = 200. (The same is also observed
for Rdt,Rpt,Rst.)

n = 200 n = 500

Normal d = 2 d = 3 d = 5 d = 10 SE d = 2 d = 3 d = 5 d = 10 SE

0.01 0.012 0.0134 0.0106 0.0128 0.003 0.0128 0.0115 0.012 0.0115 0.002
0.05 0.0536 0.0499 0.0466 0.0495 0.002 0.0525 0.0474 0.0496 0.0498 0.0014
0.10 0.0969 0.095 0.0909 0.0909 0.0066 0.0968 0.0975 0.0976 0.0961 0.003
0.30 0.281 0.280 0.273 0.268 0.025 0.292 0.294 0.275 0.284 0.014
0.50 0.477 0.472 0.462 0.463 0.032 0.486 0.483 0.480 0.477 0.020
0.70 0.684 0.679 0.674 0.670 0.023 0.691 0.691 0.683 0.682 0.013
0.90 0.899 0.899 0.896 0.901 0.002 0.898 0.901 0.898 0.896 0.002
0.95 0.955 0.955 0.953 0.953 0.004 0.953 0.951 0.952 0.949 0.002
0.99 0.994 0.993 0.993 0.992 0.003 0.991 0.991 0.992 0.994 0.002

Table 1
Distribution of Rg: Gaussian noise.

n = 200 n = 500

Normal d = 2 d = 3 d = 5 d = 10 SE d = 2 d = 3 d = 5 d = 10 SE

0.01 0.011 0.011 0.013 0.013 0.002 0.0106 0.012 0.012 0.0106 0.001
0.05 0.0455 0.0499 0.049 0.05 0.001 0.0473 0.053 0.0486 0.0496 0.002
0.10 0.0873 0.0923 0.0925 0.096 0.008 0.0905 0.099 0.0938 0.0945 0.006
0.30 0.26 0.273 0.268 0.273 0.03 0.2645 0.28 0.274 0.276 0.03
0.50 0.462 0.469 0.461 0.466 0.04 0.46 0.478 0.47 0.474 0.03
0.70 0.668 0.665 0.67 0.68 0.03 0.6755 0.682 0.679 0.675 0.02
0.90 0.892 0.887 0.887 0.897 0.009 0.899 0.898 0.892 0.895 0.004
0.95 0.95 0.949 0.947 0.954 0.002 0.954 0.952 0.947 0.949 0.003
0.99 0.9914 0.993 0.9914 0.99 0.001 0.992 0.992 0.992 0.992 0.002

Table 2
Distribution of Rdt : Two-Point noise and delocalized singular vectors.
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n = 200 n = 500

Normal d = 2 d = 3 d = 5 d = 10 SE d = 2 d = 3 d = 5 d = 10 SE

0.01 0.016 0.0151 0.011 0.0123 0.004 0.011 0.011 0.011 0.011 0.001
0.05 0.053 0.0513 0.051 0.0464 0.002 0.051 0.0505 0.0478 0.0536 0.002
0.10 0.0976 0.0968 0.0955 0.0953 0.004 0.094 0.0959 0.0934 0.1 0.004
0.30 0.273 0.275 0.279 0.268 0.03 0.277 0.283 0.274 0.282 0.02
0.50 0.468 0.473 0.469 0.463 0.03 0.479 0.481 0.469 0.47 0.03
0.70 0.686 0.68 0.677 0.672 0.02 0.68 0.68 0.676 0.674 0.02
0.90 0.9035 0.9025 0.895 0.897 0.004 0.908 0.897 0.892 0.891 0.007
0.95 0.959 0.957 0.954 0.95 0.005 0.955 0.952 0.95 0.949 0.002
0.99 0.995 0.991 0.994 0.993 0.003 0.993 0.992 0.993 0.991 0.002

Table 3
Distribution of Rpt : Two-Point noise and delocalized left singular vector and sparse

right singular vector.

n = 200 n = 500

Normal d = 2 d = 3 d = 5 d = 10 SE d = 2 d = 3 d = 5 d = 10 SE

0.01 0.0115 0.009 0.008 0.0825 0.002 0.0099 0.009 0.0098 0.0088 0.001
0.05 0.0454 0.0448 0.042 0.0443 0.006 0.0469 0.0468 0.045 0.044 0.004
0.10 0.0873 0.0886 0.081 0.0864 0.004 0.0908 0.095 0.091 0.0896 0.005
0.30 0.266 0.270 0.269 0.275 0.030 0.280 0.278 0.282 0.270 0.02
0.50 0.460 0.463 0.460 0.453 0.042 0.467 0.473 0.478 0.463 0.03
0.70 0.666 0.670 0.660 0.656 0.037 0.673 0.680 0.673 0.663 0.03
0.90 0.885 0.883 0.884 0.879 0.017 0.890 0.890 0.894 0.889 0.009
0.95 0.944 0.940 0.940 0.939 0.009 0.943 0.943 0.948 0.948 0.005
0.99 0.989 0.987 0.988 0.989 0.002 0.989 0.989 0.99 0.989 0.001

Table 4
Distribution of Rst: Two-Point noise and both singular vectors sparse.

Further, in Figure S1, we plot the ECDFs of of Rg,Rdt,Rpt,Rst in sub-
figures (A), (B), (C), (D) respectively, for n = 500 and various values of
d = 2, 3, 5, 10.

B. Discussions on statistical applications. In this section, we pro-
vide simulation results of Section 3.2 and some further discussions on the
statistical applications. We first provide the results of the mean-variance
discussion of the estimation of singular vectors, which is illustrated in Fig-
ure S2. In the following simulations, we consider the setting that the signal
matrix S has rank r = 2 with the singular values d1 = 5 and d2 = 3. As-
sume M is even. Assume the left singular vectors of S are u1 = 1√

M
1M and

u2 = 1√
M

(1TM/2,−1
T
M/2)T , a vector with the first half entries 1/

√
M and

remaining entries −1/
√
M . Set V0 = (f1,f2).
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Recall the definitions in (2.3) and (2.4). When the noise is Gaussian, we
use the statistic

(S1) T1g =

√
n

σ

( 2∑
i,j=1

|〈v̂i,vj〉|2 − a(d1)− a(d2)
)
,

where

σ2 =
2∑
i=1

(4θ(di)
2 + VE(di)).

Note that T1g is a scaled version of the proposed statistic S1 in (3.1), i.e.
T1g = S1/σ. When the noise is Two-point type, we use the statistic

(S2) T1t :=

√
n

σt

( 2∑
i,j=1

|〈v̂i,vj〉|2 − a(d1)− a(d2)
)
,

where

σ2
t =

2∑
i=1

(
4θ(di)

2 + VE(di)
)
− 3y

2

2∑
i=1

θ(di)
2

d2
i

+
4
√
y

√
2

θ(d1)2

d1
.

T1t is also a scaled version of S1.
Under the nominal level α, we will reject H0 when

|T1g(t)| > z1−α/2,

where z1−α/2 is the 1−α/2 quantitle of a standard Gaussian random variable.
In Table 5, we record the type I error rates which show the accuracy of our
proposed z-score test for different values of y based on 10, 000 simulations.

Gaussian noise Two-point noise

α = 0.05 α = 0.1 α = 0.05 α = 0.1

n = 200 n = 500 n = 200 n = 500 n = 200 n = 500 n = 200 n = 500

y = 0.5 0.047 0.0482 0.098 0.0967 0.0501 0.0496 0.105 0.0945

y = 1 0.057 0.046 0.092 0.096 0.0488 0.0491 0.097 0.099

y = 2 0.0494 0.052 0.0984 0.0955 0.0474 0.049 0.091 0.094

Table 5
Type I error under H0 for (T1) using z-score test.

Finally, to study the power of our test against the alternatives, we consider
the matrix Va = (f1,

√
1− δ2f2 + δf3) for a parameter δ ∈ (0, 1). In Figure
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6 ZHIGANG BAO, XIUCAI DING, KE WANG

S3, we record the simulated power for different values of δ under the nominal
level α = 0.05 when X is a Two-point noise matrix. We find that the power
of our tests increases when δ increases. Furthermore, at the same level of δ,
the power is improved when n increases.

0.25

0.50

0.75

1.00

0.1 0.2 0.3 0.4 0.5
delta

po
w

er y=0.5
y=1
y=2

Fig S3: Power vs δ under the nominal level α = 0.05 for y = 0.5, 1, 2 respec-
tively.

As we mentioned in the article [S1], we assume that D, U and the nec-
essary parameters of X are known and we do the hypothesis testing about
V . Although in general we cannot drop all the a priori information about
D, U , and X, some efforts can be made along this direction. In the sequel,
for instance, we discuss some possible extension to the case when D and
the necessary parameters of X are unknown. More specifically, recall that di
and
√
µi are the singular values of S and Y , respectively. We know that

√
µi

converges to p(di) in probability. In our theorems for singular vectors, we
can use p−1(

√
µi) to replace di. Such a replacement will change the distri-

bution of our statistics. For instance, if we change a(di) by a(p−1(
√
µi)) in

Theorem 2.3, such a change will bring additional fluctuation of the statistic.
However, one can still use our method to derive the limiting distribution
for such a modified statistic where di’s are replaced by their estimates, i.e.,
p−1(
√
µi)’s. It is simply because the fluctuation of

√
µi can also be written

as a quadratic form of the Green function. We anyway have the joint dis-
tribution of the quadratic forms of the Green function and its derivative.
So we can also derive the joint distribution of the singular vectors and the
singular values. Replacing di in quantities like ∆i and Vi by the estimator
p−1(
√
µi) is completely harmless since the error is of order 1√

n
. Further, in
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some simple case, we can also estimate the cumulants of the noise of X. For
instance, suppose we use the p−1(

√
µ
i
) to replace di in our theorems, and

further we assume that the left singular vectors are known and we want to
test whether the right singular subspace V is identical to some given ma-
trix V0. In this case, we can estimate the parameters of X by considering
X̂ := Y −Ŝ. Here Ŝ = UD̂V ∗ with D̂ = diag(p−1(

√
µi))

r
i=1. Since the entries

of X are assumed to be i.i.d., we can estimate the the second moment of√
nxij ’s as the following

1

M

∑
i,j

|xij |2 =
1

M
TrXX∗ =

1

M
TrX̂X̂∗ − 1

M
Tr(S − Ŝ)X̂∗ − 1

M
TrX̂(S − Ŝ)∗

+
1

M
Tr(S − Ŝ)(S − Ŝ)∗.

Using the facts ‖X̂‖ = O(1), ‖S − Ŝ‖ = O(n−
1
2 ) and rank(S − Ŝ) = r

which is fixed, it is easy to see that the last three terms are of order n−1 in
probability. Further, it is easy to see that 1

MTrXX∗ can estimate E(
√
nxij)

2

up to an error of order 1
n in probability. Hence, we can estimate E(

√
nxij)

2

by 1
MTrX̂X̂∗ which can be computed from the data, if the null hypothesis

holds. The other cumulants can be estimated in a similar way.
In practice, some of the extension above could be quite important. For

instance, the joint distribution of the singular values and vectors allow us to
consider the inference on statistics involving both of them. In [S8], to test
whether the community memberships of the two networks are the same in the
stochastic block model, the authors proposed a statistic involving the scaled
principal angles, where the scalings are the singular values (see [S8, Section
4.2] for details). Further, in [S4], the authors derived the formulas for the
optimal shrinkers of the singular values under various norms. These shrinkers
are essentially combinations of products of the singular values and inner
products of |〈ui, ûi〉|, |〈vi, v̂i〉|. Finally, there exist a lot works on estimating
the low rank matrix S, to name but a few [S5, S10, S11]. With the results on
the joint distribution, it is possible for us to do inference on the estimation
of the low-rank matrix S. Nevertheless, we leave all the extensions to the
future work.

C. Preliminary results. In this section, we list some preliminary re-
sults which will be used in the technical proof.

C.1. Auxiliary lemmas. A key tool for our computation is the following
cumulant expansion formula, whose proof can be found in [S9, Proposition
3.1] and [S6, Section II], for instance.
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Lemma C.1. Let ` ∈ N be fixed and let f ∈ C`+1(R). Let ξ be a cen-
tered random variable with finite first `+ 2 moments. Let κk(ξ) be the k-th
cumulant of ξ. Then we have the expansion

E(ξf(ξ)) =
∑̀
k=1

κk+1(ξ)

k!
E(f (k)(ξ)) + E(ε`(ξf(ξ))),(S1)

where ε`(ξf(ξ)) satisfies

|E(ε`(ξf(ξ)))| ≤ C`E(|ξ|`+2) sup
|t|≤χ
|f (`+1)(t)|+ C`E(|ξ|`+21(|ξ| > χ)) sup

t∈R
|f (`+1)(t)|

for any χ > 0.

Note that when ξ is a standard Gaussian random variable (i.e. κi = 0, i ≥
3), (S1) boils down to the celebrated Stein’s lemma [S12]. Next we introduce
the identities on the derivatives of the Green functions in (4.5). These can
be verified by elementary calculus so we omit the proofs. For i ∈ [M ] and
j ∈ [n], denote by Eij′ the (M + n) × (M + n) matrix with entry 1 on the
(i, j′) position and 0 elsewhere.

Lemma C.2. Let Eij = Eij′ + Ej′i and k ∈ N. We have

∂kG

∂xkij
= (−1)kk!z

k
2 (GEij)kG,

∂k(G2)

∂xkij
= (−1)kk!z

k
2

k∑
s=0

(GEij)sG(GEij)k−sG.

Below we also collect some basic results on convergence and equivalence in
distribution for sum of random variables. They can be found in [S7, Lemma
7.7, 7.8 and 7.10].

Lemma C.3. (1). Let Xn ' Yn and Rn satisfy limn→∞ P
(
|Rn| ≤ εn

)
= 1,

where {εn} is a positive null sequence. Then

Xn ' Yn + Rn.

(2). Let {Xn}, {X′n}, {Yn} and {Y′n} be sequences of random variables. Sup-
pose Xn ' X′n, Yn ' Y′n, Xn and Yn are independent, and X′n and Y′n are
independent. Then

Xn + Yn ' X′n + Y′n.
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(3). Let {Zn} be a bounded deterministic sequence. Let {Xn} be random vari-
ables such that Xn converges weakly to X. Then for any bounded continuous
function f, as n→∞, we have

Ef(ZnXn)− Ef(ZnX)→ 0.

C.2. Collection of derivatives. In this part, we summarize some basic
identities on the derivatives of G and Q defined in (5.12) without proof.
Recall the notation introduced in (5.4).

Using Lemma C.2, it is easy to check(∂2G

∂x2
ij

W
)
ab

= 2z
∑

l1,··· ,l4∈{i,j′}
l1 6=l2,l3 6=l4

Gal1Gl2l3(GW )l4b,(S2)

(∂3G

∂x3
ij

W
)
ab

= −6z
3
2

∑
l1,··· ,l6∈{i,j′}

l1 6=l2,l3 6=l4,l5 6=l6

Gal1Gl2l3Gl4l5(GW )l6b,(S3)

(∂4G

∂x4
ij

W
)
ab

= 24z2
∑

l1,··· ,l8∈{i,j′}
l1 6=l2,l3 6=l4,l5 6=l6,l7 6=l8

Gal1Gl2l3Gl4l5Gl6l7(GW )l8b.(S4)

and also the following identities(∂2G2

∂x2
ij

W
)
ab

= 2z
∑

(a1,a2,a3)∈P(2,1,1)

∑
l1,··· ,l4∈{i,j′}
l1 6=l2,l3 6=l4

Ga1al1G
a2
l2l3

(Ga3W )l4b,

(∂3G2

∂x3
ij

W
)
ab

= −6z
3
2

∑
(a1,...,a4)∈P(2,1,1,1)

∑
l1,··· ,l6∈{i,j′}

l1 6=l2,l3 6=l4,l5 6=l6

Ga1al1G
a2
l2l3
Ga3l4l5(Ga4W )l6b,

(∂4G2

∂x4
ij

W
)
ab

= 24z2
∑

(a1,...,a5)∈P(2,1,1,1,1)

∑
l1,··· ,l8∈{i,j′}

l1 6=l2,l3 6=l4,l5 6=l6,l7 6=l8

Ga1al1G
a2
l2l3
Ga3l4l5G

a4
l6l7

(Ga5W )l8b.

(S5)

Similarly, using Lemma C.2 and a discussion similar to (S1), we can also
derive

∂2Q

∂x2
ij

= 2z
√
n

∑
l1,··· ,l4∈{i,j′}
l1 6=l4,l2 6=l3

(
(GAG)l1l2Gl3l4 −

1

2z
(GBG)l1l2Gl3l4
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+
1

2

∑
(a1,a2,a3)∈P(2,1,1)

(Ga1BGa2)l1l2G
a3
l3l4

)
,

(S6)

∂3Q

∂x3
ij

= −6z
3
2
√
n

∑
l1,··· ,l6∈{i,j′}

l1 6=l6,l2 6=l3,l4 6=l5

(
(GAG)l1l2Gl3l4Gl5l6 −

1

2z
(GBG)l1l2Gl3l4Gl5l6

+
1

2

∑
(a1,...,a4)∈P(2,1,1,1)

(Ga1BGa2)l1l2G
a3
l3l4
Ga4l5l6

)
,

(S7)

∂4Q

∂x4
ij

= 24z2√n
∑

l1,··· ,l8∈{i,j′}
l1 6=l8,l2 6=l3,
l4 6=l5,l6 6=l7

(
(GAG)l1l2Gl3l4Gl5l6Gl7l8 −

1

2z
(GBG)l1l2Gl3l4Gl5l6Gl7l8

+
1

2

∑
(a1,...,a5)∈P(2,1,1,1,1)

(Ga1BGa2)l1l2G
a3
l3l4
Ga4l5l6G

a5
l7l8

)
.

(S8)

D. Proof of Lemmas 4.7 and 4.8.

Proof of Lemma 4.7. We focus our discussion on the first identity
(4.18). Differentiating z on both sides of the equation

G(H − z) = I,

we can get that

G′(H − z) +
1

2z
G(H − 2z) = 0.

The proof follows by multiplying G on both sides of the above equation. For
G3 and G4, we can compute them recursively by differentiating the following
two equations respectively

G2(H − z) = G, G3(H − z) = G2.

This completes the proof.

Proof of Lemma 4.8. To prove Lemma 4.8, we first need the following
result from [S3].

Lemma D.1 (Theorem 3.3 and 3.4 of [S3]). Under assumptions of (1.3),
(1.4), (1.8) and Assumption 2.1, for i, j ∈ [r], we have

|µi − p(di)| = O≺(n−
1
2 ).
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In addition, for the singular vectors, we have

|〈ui, ûi〉2 − a1(di)| = O≺(n−
1
2 ), |〈vi, v̂i〉2 − a(di)| = O≺(n−

1
2 ),

and for 1 ≤ i 6= j ≤ r,

|〈ui, ûj〉|2 = O≺(
1

n
), |〈vi, v̂j〉|2 = O≺(

1

n
).

With Lemma D.1, we can rewrite (1.7) as

(S1) L =

r∑
i=1

|〈ûi,ui〉|2 +O≺(
1

n
) and R =

r∑
i=1

|〈v̂i,vi〉|2 +O≺(
1

n
).

We next write the above quantities in terms of the Green functions. Re-
call from (4.1) Y ≡ Y(z) and denote by Ĝ(z) = (Y − z)−1. By spectral
decomposition, we write

Ĝ(z) =
M∧n∑
i=1

1

µi − z

(
ûiû

∗
i z−1/2√µ

i
ûiv̂

∗
i

z−1/2√µ
i
v̂iû

∗
i v̂iv̂

∗
i

)

−1

z

M∨n∑
i=M∧n

(
1M>nûiû

∗
i 0

0 1M<nv̂iv̂
∗
i

)
.(S2)

For any i ∈ [r], denote Γi := ∂Bρ(di), where Bρ(di) is the open disc of
radius ρ around di. Here ρ is chosen to be a small but fixed positive number
such that different discs corresponding to different di do not have overlaps.
This is achievable due to Assumption 2.1. We start with the right singular
vectors. Denote

Ĝ1(z) = (Y Y ∗ − z)−1, Ĝ2(z) = (Y ∗Y − z)−1.

Note that on one hand, we have for i ≤ r,

〈vi, Ĝ2(z)vi〉 = 〈vi, Ĝ(z)vi〉, vi = (0,v∗i )
∗.

One the other hand, by Lemma D.1 and Cauchy’s integral formula, with
high probability, we have

v̂iv̂
∗
i = − 1

2πi

∮
p(Γi)
Ĝ2(z)dz.

Together with (S2), with high probability, we have the following integral
representation

|〈vi, v̂i〉|2 =
1

2d2
iπi

∮
p(Γi)

((
D−1 + U∗G(z)U

)−1)
ii

dz

z
,
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12 ZHIGANG BAO, XIUCAI DING, KE WANG

where we used the fact that

U∗Ĝ(z)U = D−1 −D−1(D−1 + U∗G(z)U)−1D−1.

Recall (4.10) and denote

Ψ(z) = −U∗(Π1(z)−G(z))U .(S3)

Using Lemma 4.4, we have

‖Ψ(z)‖op = O≺(n−
1
2 ), z ∈ So.(S4)

We can decompose D−1(D−1 + U∗G(z)U)−1D−1 as

D−1 + U∗G(z)U = D−1 + U∗Π1(z)U + Ψ(z).

We further employ the resolvent expansion for (D−1 +U∗G(z)U)−1 to write

|〈vi, v̂i〉|2 =
1

d2
i

(S0 + S1) +O≺(
1

n
),

where

S0 =
1

2πi

∮
p(Γi)

((
D−1 + U∗Π1(z)U

)−1)
ii

dz

z
,

S1 =
1

2πi

∮
p(Γi)

((
D−1 + U∗Π1(z)U

)−1
Ψ(z)

(
D−1 + U∗Π1(z)U

)−1
)
ii

dz

z
.

(S5)

Here we used a discussion similar to Eq. (5.19) and Lemma 5.5 of [S3] and
omit further details. By the residual theorem, we have S0 = d2

i a(di). Recall
(4.23) and denote

fi(z) := −Tr
(
Ξ1(z)UWi(z)U∗

)
.

We can then write

S1 =
1

2πi

∮
p(Γi)

zfi(z)

(zm1c(z)m2c(z)− d−2
i )2

dz.

As p(d) is a monotone function when d > y1/4 and by Lemma 4.1, we find
that

S1 =
d4
i

2πi

∮
Γi

p(ζ)fi(p(ζ))ζ4p′(ζ)

(di − ζ)2(di + ζ)2
dζ.
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Then, by residue theorem, we obtain

S1 = d4
i

(
fi(p(ζ))

ζ4p′(ζ)p(ζ)

(di + ζ)2

)′∣∣∣
ζ=di

= d2
iTr
(
Ξ1(pi)A

R
i

)
+ d2

iTr
(
Ξ′1(pi)B

R
i

)
,

(S6)

where we recall (4.22) and the definitions of ARi and BR
i in (4.25). The

conclusion for |〈vi, v̂i〉|2 follows immediately.
The above discussion holds for all i ∈ [r]. Rearranging the terms of (S6)

and using Lemma 4.1, we can conclude our proof for R using (S1). Similar
discussion yields the conclusion of |〈ui, ûi〉|2 for each i ∈ [r] and L. This
completes the proof of Lemma 4.8.

E. Proof of Proposition 5.2. This section is devoted to the proof of
Proposition 5.2. In Proposition 5.2, we choose different parameters, z and
z0, for Q and ∆, separately. However, for brevity, we will omit both two
parameters for simplicity in the sequel.

First of all, applying (4.17) to the definition in (5.1), we have

(S1) Q = O≺(1).

Denote (M + n)× (M + n) diagonal matrices

Iu :=

(
IM

0

)
and Il :=

(
0

In

)
.(S2)

We further define A1 = AIu, A2 = AIl and define B1, B2 analogously. In
addition, we set

fα := −mαTrHΞ1Aα + (1 + zmα)TrGAα,

gα := −mα

2
TrHΞ2Bα +

1 + zmα

2
TrG2Bα +

zmα − 1

2z
TrGBα

−m′αTrBα +m′αTrHΠ1Bα, α = 1, 2.(S3)

The proof of Proposition 5.2 is based on the following two lemmas.

Lemma E.1. Recall (5.5) and (5.6). For z defined in (5.14), we have

Q =
√
n
(
f1 + f2 + g1 + g2

)
+
√
nz

∑
(i,j)∈S(ν)

cijxij −∆d.(S4)

To state the second crucial lemma, Lemma E.2. We first introduce some
notations. Recall that Πa (1 ≤ a ≤ 4) in (4.10) and (4.19) approximates
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14 ZHIGANG BAO, XIUCAI DING, KE WANG

Ga. We introduce the following matrices to approximate the powers of G
interacting with block diagonal matrices Iu and Il. For 1 ≤ a1, a2 ≤ 2,
define

Πu
a1,a2 := Πa1I

uΠa2 and Πl
a1,a2 := Πa1I

lΠa2 .(S5)

Note that they approximateGa1IuΠa2 andGa2IlΠa2 respectively. We further
define

Πu
2 := m′1IM ⊕ (m′2 +

1

z
m2)In and Πl

2 := (m′1 +
1

z
m1)IM ⊕m′2In,(S6)

which approximate GIuG and GIlG.
We need to introduce more notations. The first set of notations will show

up in the calculation of ∆d, which is the mean value of Q. We set

da1 :=
2z

n

∑
i,j

(Π1)ii(Π1)j′j′(Π1A1)j′i, da2 :=
2z

n

∑
i,j

(Π1)ii(Π1)j′j′(Π1A2)ij′ ,

d̃1 :=
2z

n

∑
(a1,a2,a2)∈P(2,1,1)

∑
i,j

(Πa1)ii(Πa2)j′j′(Πa3B1)j′i,

d̃2 :=
2z

n

∑
(a1,a2,a2)∈P(2,1,1)

∑
i,j

(Πa1)ii(Πa2)j′j′(Πa3B2)ij′ .

(S7)

And db1 (resp. db2) is defined by replacing A1 (resp. A2) to B1 (resp. B2) in
the expression of da1 (resp. da2). Using (S2), we further set

Πu
3 := (m′′1 +

1

z
m′1)IM ⊕ (m′′2 +

2

z
m′2)In,

Πl
3 := (m′′1 +

2

z
m′1)IM ⊕ (m′′2 +

1

z
m′2)In,

Πu
4 := (

2

3
m

(3)
1 +

2

z
m′′1 +

1

z2
m′1)IM ⊕ (

2

3
m

(3)
2 +

2

z
m′′2)In,

Πl
4 := (

2

3
m

(3)
1 +

2

z
m′′1)IM ⊕ (

2

3
m

(3)
2 +

2

z
m′′2 +

1

z2
m′2)In.(S8)

The next set of notations will appear in the derivation of the variance of Q.
We denote

a11 := −(k − 1)
√
z
(

2Tr(Πl
2 −Πl

1,1)A1Π1A−
1

z
Tr(Πl

2 −Πl
1,1)A1Π1B

+ Tr(Πl
2 −Πl

1,1)A1Π2B + Tr(Πl
3 −Πl

2,1)A1Π1B
)
,
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b̃11 := −(k − 1)
√
z
(

2Tr(Πl
3 −Πl

1,2)B1Π1A−
1

z
Tr(Πl

3 −Πl
1,2)B1Π1B

+ Tr(Πl
3 −Πl

1,2)B1Π2B + Tr(Πl
4 −Πl

2,2)B1Π1B
)
.(S9)

In addition, a12 is defined via replacing A1 with A2 and Πl
a,Π

l
a1,a2 with

Πu
a,Π

u
a1,a2 in the definition of a11 . We further define b11 (resp. b12) via

replacing A1 (resp. A2) with B1 (resp. B2) in the definition of a11 (resp.
a12). Similarly, b̃12 is obtained by replacing B1 with B2 and Πl

a,Π
l
a1,a2 with

Πu
a,Π

u
a1,a2 in the definition of b̃11.

Next, recall cij defined in (5.7) and set

a21 := −(k − 1)z√
n

∑
(i,j)∈S(ν)

(Π1)j′j′(Π1A1)iicij ,

b̃21 := −(k − 1)z√
n

∑
(i,j)∈S(ν)

(
(Π1)j′j′(Π2B1)ii + (Π2)j′j′(Π1B1)ii

)
cij .(S10)

Further, a22 (resp. b̃22) is defined by replacing (A1)ii (resp. (B1)ii) with
(A2)j′j′ (resp. (B2)j′j′) in the definition of a21 (resp. b̃21). Then we recall sij
in (5.8) and set

a31 := −2(k − 1)z3/2

n

∑
i,j

(Π1)j′j′(Π1A1)iisij ,

b̃31 = −2(k − 1)z3/2

n

∑
i,j

(
(Π1)j′j′(Π2B1)ii + (Π2)j′j′(Π1B1)ii

)
sij .(S11)

Further, a32 (resp. b̃32) is defined via replacing (A1)ii (resp. (B1)ii) with
(A2)j′j′ (resp. (B2)j′j′) in the definition of the a31 (resp. b̃31). Also, b31

(resp. b32) is defined by replacing A1 (resp. A2) with B1 (resp. B2) in the
definition of a31 (resp. a32).

For α = 1, 2, we further write

a0α := a1α + κ3a2α +
κ4

2
a3α,

b0α :=
mα

2
b̃1α +m′αb1α +

κ3mα

2
b̃2α + κ3m

′
αb2α +

κ4mα

4
b̃3α +

κ4m
′
α

2
b3α.

(S12)

For brevity, we also adopt the notation

q(l) = Ql(z)eit∆(z0).

Recall the notations in (S3). With the above notations, we now state the
following lemma.
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16 ZHIGANG BAO, XIUCAI DING, KE WANG

Lemma E.2. Under the assumptions of Theorem 2.3, we have for α =
1, 2,

√
nEfαq(k−1) = −

√
zmαE

(κ3

2
daαq

(k−1) + a0αq
(k−2)

)
+O≺(n−

1
2

+4ν),

(S13)

√
nEgαq(k−1) = −

√
zE
(κ3

4

(
mαd̃α + 2m′αd

b
α

)
q(k−1) + b0αq

(k−2)
)

+O≺(n−
1
2

+4ν),

(S14)

In addition, we also have

√
nz

∑
(i,j)∈S(ν)

cijExijq(k−1) = (k − 1)
(
z

∑
(i,j)∈S(ν)

c2
ij +

z
3
2κ3√
n

∑
(i,j)∈S(ν)

sijcij

)
Eq(k−2)

+O≺(n−
1
2

+4ν).

(S15)

With Lemmas E.1 and E.2, we can now prove Proposition 5.2.

Proof of Proposition 5.2. By simply combining Lemma E.1 and E.2,
we can write

Eq(k) = c1Eq(k−1) + c2Eq(k−2) −∆dEq(k−1) +O≺(n−
1
2

+4ν),

where

c1 = −
√
zκ3

∑
α=1,2

(1

2
mαd

a
α +

1

4
mαd̃α +

1

2
m′αd

b
α

)
,

c2 = −
√
z
∑
α=1,2

(
mαa1α + κ3mαa2α +

κ4mα

2
a3α +

mα

2
b̃1α +m′αb1α

+
κ3mα

2
b̃2α + κ3m

′
αb2α +

κ4mα

4
b̃3α +

κ4m
′
α

2
b3α

)
+ z

∑
(i,j)∈S(ν)

c2
ij +

z
3
2κ3√
n

∑
(i,j)∈S(ν)

sijcij .

Also recall ∆d from (5.5) and V from (5.9). By substituting the definitions
of the notations in (S7), (S9), (S10), (S11), and also their analogues, it is
elementary to check

c1 = ∆d, c2 = V.(S16)

This completes the proof of (5.16). Further we can regard (5.15) as a de-
generate case of (5.16). The proof can be done in the same way. We thus
conclude the proof of Proposition 5.2.
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Therefore, what remains is to prove Lemmas E.1 and E.2. We prove
Lemma E.1 in the rest of this section, and state the proof of Lemma E.2 in
Section F.

Proof of Lemma E.1. Recall from (5.11) and (5.12) that

Q = Q−∆r −∆d.(S17)

For brevity, we also write

(S18) F1 = 1 + zm1, F2 = 1 + zm2.

By (4.7) and (4.8), it is easy to check that

(S19) F1 = −zm1m2, F2 = −zym1m2.

Note that by definition TrGA = TrGA1 +TrGA2 and TrΠ1A = m1TrA1 +
m2TrA2. Thus using (S18), we have

TrΞ1A = TrGA1 + TrGA2 −m1TrA1 −m2TrA2

= −m1TrHGA1 −m2TrHGA2 + F1TrGA1 + F2TrGA2,(S20)

where in the last step, we used the fact zG = HG− I.
Using (4.18) and (4.19), one can write

TrΞ′1B =
1

2
TrG2B1 +

1

2
TrG2B2 −

1

2z
TrGB1 −

1

2z
TrGB2 −m′1TrB1 −m′2TrB2.

By further using the identity zG2 = HG2 −G, it is not difficult to check

TrΞ′1B = −m1

2
TrHG2B1 +

F1

2
TrG2B1 +

1

2
(m1 −

1

z
)TrGB1 −m′1TrB1

− m2

2
TrHG2B2 +

F2

2
TrG2B2 +

1

2
(m2 −

1

z
)TrGB2 −m′2TrB2.(S21)

Recall the definition (5.1). Putting (S20) and (S21) together, we get

Q =
√
n
(
−m1TrHGA1 + F1TrGA1 −m2TrHGA2 + F2TrGA2

− m1

2
TrHG2B1 +

F1

2
TrG2B1 +

1

2
(m1 −

1

z
)TrGB1 −m′1TrB1

− m2

2
TrHG2B2 +

F2

2
TrG2B2 +

1

2
(m2 −

1

z
)TrGB2 −m′2TrB2

)
.(S22)
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Recall the definition of ∆r from (5.6). We write

∆r =
√
nz
∑
i,j

xijcij −
√
nz

∑
(i,j)∈S(ν)

xijcij .

Further recall the definition of cij from (5.7). It is elementary to check that

√
nz
∑
i,j

xijcij = −
√
n
(
m1TrHΠ1A1 +m2TrHΠ1A2 +

m1

2
TrHΠ2B1

+
m2

2
TrHΠ2B2 +m′1TrHΠ1B1 +m′2TrHΠ1B2

)
.(S23)

Using (S22) and (S23), with the notations defined in (S3), we can write

Q−
√
nz
∑
i,j

xijcij =
√
n
(
f1 + f2 + g1 + g2

)
.(S24)

Combining (5.6), (S17) and (S24) we can conclude the proof.

F. Proof of Lemma E.2. To prove Lemma E.2, we need the following
lemma summarizing some estimates on the derivative of Q w.r.t xij ’s, which

will be frequently used in the subsequent discussion. We first write ∂Q
∂xij

in

terms of Green functions. Recall the definition of Q in (5.12) that

Q =
√
n
(

Tr
(
Ξ1A

)
+ Tr

(
Ξ′1B

))
−
√
nz

∑
(i,j)∈B(ν)

xijcij −∆d,

where Ξ1 = G − Π1 and ∆d is a deterministic quantity in (5.5). Using
G′ = 1

2(G2 − z−1G) in Lemma 4.7, we find that

∂Q

∂xij
=
√
n

(
Tr

∂G

∂xij
A+

1

2
Tr
(∂G2

∂xij
B − z−1 ∂G

∂xij
B
))
−1
(

(i, j) ∈ B(ν)
)√

nzcij .

By Lemma C.2, it can be further seen that

∂Q

∂xij
= −
√
nz

∑
l1,l2∈{i,j′}
l1 6=l2

(
(GAG)l1l2 −

1

2z
(GBG)l1l2 +

1

2
(GBG2)l1l2 +

1

2
(G2BG)l1l2

)

− 1
(

(i, j) ∈ B(ν)
)√

nzcij .

(S1)
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Lemma F.1. Under the assumptions of Proposition 5.1, we have

∂Q

∂xij
=
√
nz1

(
(i, j) ∈ S(ν)

)
cij +O≺(1).(S2)

Consequently, we have the bounds

∂Q

∂xij
=


O≺(1), ∀ (i, j) ∈ B(ν)

O≺(n
1
2
−ν), ∀(i, j) ∈ S(ν).

(S3)

Proof of Lemma F.1. First, recall the definitions in (4.19) and (4.18).
By (4.17), we have that for a1, a2 = 1, 2,

(Ga1AGa2)l1l2 = (Πa1AΠa2)l1l2 +O≺(n−
1
2 ).

Applying the above estimates to (S1), we find that

∂Q

∂xij
= −
√
zn

∑
l1,l2∈{i,j′}
l1 6=l2

(
(Π1AΠ1)l1l2 −

1

2z
(Π1BΠ1)l1l2 +

1

2
(Π1BΠ2)l1l2 +

1

2
(Π2BΠ1)l1l2

)

− 1
(

(i, j) ∈ B(ν)
)√

nzcij +O≺(1).

(S4)

Comparing (S4) with the definition of cij in (5.7), we prove (S2) and the
first case of (S3).

Next, by the definitions of A,B in (4.26) and the set S(ν) in (5.3), it
follows immediately that there exists some constant C > 0, such that

|Aij′ | ≤ Cn−ν , |Bij′ | ≤ Cn−ν , ∀(i, j) ∈ S(ν).

By the estimates in (4.15), we get the second case of (S3). This concludes
the proof of Lemma F.1.

The remaining of the section is devoted to the proof of Lemma E.2.

Proof of Lemma E.2. We will focus on the proof of (S13). Since the
proof of (S14) is analogous, we shall only outline the main steps. Recall from
the definition in (S3) and (S18) that

√
nEf1q

(k−1) = E
(
−m1

√
zn
∑
i,j

xij(Ξ1A1)j′i +
√
nF1TrGA1

)
q(k−1).(S5)
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For brevity, we use the notations

(S6) h1 =
(
Ξ1A1

)
j′i
, h2 = Qk−1, h3 = eit∆.

Note that h1 actually depends on the index (j′, i). However, we drop this
dependence from notation for brevity. By Lemma C.1, one has

√
n
∑
i,j

Exij(Ξ1A1)j′iq
(k−1) =

√
n
∑
i,j

Exij(h1h2h3)

=
3∑
l=1

κl+1

l!nl/2

∑
i,j

E
( ∂l

∂xlij
(h1h2h3)

)
+ ER1,(S7)

where R1 satisfies that, for any sufficiently small ε > 0 and sufficiently large
K > 0,
(S8)

|ER1| ≤
∑
i,j

E

n−2 sup

|xij |≤n−
1
2+ε

∣∣∣∣ ∂4

∂x4
ij

(h1h2h3)

∣∣∣∣+ n−K sup
xij∈R

∣∣∣∣ ∂4

∂x4
ij

(h1h2h3)

∣∣∣∣
 .

Here we used the assumption that E|
√
nxij |p ≤ Cp for all p ≥ 3. Therefore,

the main technical estimates are the first four derivatives of h1h2h3. By
product rule, for each l ∈ N, we have

∂l

∂xlij
(h1h2h3) =

∑
l1+l2+l3=l

(
l

l1, l2, l3

)
∂l1h1

∂xl1ij

∂l2h2

∂xl2ij

∂l3h3

∂xl3ij
.(S9)

First, it is elementary to verify

(S10)
∂lh3

∂xlij
= 1((i, j) ∈ B (ν))

(
it
√
nzcij

)l
eit∆,

and
∂lh1

∂xlij
=
( ∂lG
∂xlij

A1

)
j′i
.

The derivatives of h2 can be computed using Faà di Bruno’s formulas. For
the reader’s convenience, we list them here. The first derivative of h2 is

∂h2

∂xij
= (k − 1)

∂Q

∂xij
Qk−2.

The second derivative of h2 is

∂2h2

∂x2
ij

=
(k − 1)!

(k − 3)!
Qk−3

( ∂Q
∂xij

)2
+ (k − 1)Qk−2 ∂

2Q

∂x2
ij

.
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The third derivative of h2 is

∂3h2

∂x3
ij

=
(k − 1)!

(k − 4)!
Qk−4

( ∂Q
∂xij

)3
+3

(k − 1)!

(k − 3)!
Qk−3 ∂Q

∂xij

∂2Q

∂x2
ij

+(k−1)Qk−2 ∂
3Q

∂x3
ij

.

The fourth derivative of h2 is

∂4h2

∂x4
ij

=
(k − 1)!

(k − 5)!
Qk−5

( ∂Q
∂xij

)4
+ 6

(k − 1)!

(k − 4)!
Qk−4

( ∂Q
∂xij

)2 ∂2Q

∂x2
ij

+
(k − 1)!

(k − 3)!
Qk−3

(
4
∂Q

∂xij

∂3Q

∂x3
ij

+ 3
(∂2Q

∂x2
ij

)2)
+ (k − 1)Qk−2 ∂Q

4

∂x4
ij

.

As we can see from the above identities, the key ingredients are the partial
derivatives of Q and GA1.

For brevity, we introduce the notation

}(l1, l2, l3) := n−
l1+l2+l3

2

∑
i,j

∂l1h1

∂xl1ij

∂l2h2

∂xl2ij

∂l3h3

∂xl3ij
.(S11)

In the following two lemmas, we summarize the estimates of }(l1, l2, l3) for
l1 + l2 + l3 ≤ 4. The proofs of the two lemmas will be given in Sections F.1
and F.2.

Lemma F.2. For the first derivative of h1h2h3, we have that

}(1, 0, 0) = −
√
nzm2Tr(GA1)q(k−1) +O≺(n−

1
2 ),(S12)

}(0, 1, 0) = a11q
(k−2) +O≺(n−

1
2

+4ν),(S13)

}(0, 0, 1) = O≺(n−
1
2

+4ν).(S14)

Lemma F.3. On higher order derivatives of h1h2h3, we have the follow-
ing estimates.
(1). For the second derivative, we have

}(2, 0, 0) = da1q
(k−1) +O≺(n−

1
2 ),(S15)

}(1, 1, 0) = a21q
(k−2) +O≺(n−

1
2

+4ν),(S16)

}(1, 0, 1) = O≺(n−
1
2

+4ν), }(0, 2, 0) = O≺(n−
1
2 ),

}(0, 1, 1) = O≺(n−
1
2

+4ν), }(0, 0, 2) = O≺(n−1+4ν).

(2). For the third derivative, we have

}(1, 2, 0) = a31q
(k−2) +O≺(n−

1
2 ),(S17)
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}(3, 0, 0) = O≺(n−
1
2 ), }(0, 3, 0) = O≺(n−

1
2 ),

}(2, 1, 0) = O≺(n−1), }(2, 0, 1) = O≺(n−
3
2

+4ν),

}(1, 1, 1) = O≺(n−1+4ν), }(1, 0, 2) = O≺(n−
3
2

+4ν),

}(0, 2, 1) = O≺(n−
1
2

+4ν).

(3). For the fourth derivative, all the terms in the RHS of (S9) can be

bounded by O≺(n−
1
2

+4ν).

By Lemma F.2 and Lemma F.3, the first term in (S7) is estimated by

3∑
l=1

κl+1

l!nl/2

∑
i,j

E
( ∂l

∂xlij
(h1h2h3)

)
=

3∑
l=1

∑
i,j

∑
l1+l2+l3=l

κl+1

l1!l2!l3!
}(l1, l2, l3)

= −
√
nzm2Tr(GA1)q(k−1) +

κ3

2
da1q

(k−1) +
(
a11 + κ3a21 +

κ4

2
a31

)
q(k−2).

For the second term in (S7), we claim that

(S18) |ER1| ≤ n−1/2+4ν .

To prove (S18), it is enough to bound the two terms on the right hand side
of (S8). We apply Lemma F.3 to the first term on the right hand side of
(S8) to get

∑
i,j

En−2 sup

|xij |≤n−
1
2+ε

∣∣∣∣ ∂4

∂x4
ij

(h1h2h3)

∣∣∣∣ ≤ n−1/2+4ν .

A minor issue with the above step is that Lemma F.3 is proved for the matrix
X with all entries random variables. In our application of Lemma F.3, for
each pair of fixed indices (i, j), we actually consider a random matrix X
whose (i, j)th entry is a deterministic number with small magnitude and all
the others random variables. However, this can be justified by a perturbation
argument with the aid of resolvent expansion. Indeed, replacing one random
entry xij by any deterministic number bounded by n−1/2+ε and keeping the
other X entries random will not change the isotropic local law. Thus Lemma
F.3 holds for such random matrix X.

For the second term on the right hand side of (S8), we use the trivial
bounds for G and its derivatives to obtain∑

i,j

En−K sup
xij∈R

∣∣∣∣ ∂4

∂x4
ij

(h1h2h3)

∣∣∣∣ ≤ n−K+2+C
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for a positive constant C. By taking K sufficiently large, we conclude (S18).
Plugging (S7) into (S5), we finally get

√
nEf1q

(k−1) = −m1

√
zE
(κ3

2
da1q

(k−1) +
(
a11 + κ3a21 +

κ4

2
a31

)
q(k−2)

)
+O≺(n−

1
2

+4ν).

Note that by (S19), the term
√
nzm1m2TrGA1q

(k−1) is cancelled with F1TrGA1q
(k−1)

in (S5). This verifies (S13) in case of α = 1 by recalling the definition in
(S12).

Next, we turn to (S14) for α = 1. Recall the definition of g1 in (S3). We
have

√
nEg1q

(k−1) =
√
nE
(
− m1

2

√
z
∑
i,j

xij(Ξ2B1)j′i +
F1

2
TrG2B1

+
zm1 − 1

2z
TrGB1 −m′1TrB1 +m′1TrHΠ1B1

)
q(k−1).(S19)

The main task is to estimate the cumulant expansion of the term

√
n
∑
i,j

Exij(Ξ2B1)j′iq
(k−1),

which is analogous to (S7). Recall h2 and h3 in (S6) and denote

(S20) h̃1 =
(
Ξ2B1

)
j′i
.

Note that h̃1 depends on the indices i, j. However, we drop these dependence
from the notation for brevity. Similarly to (S11), we introduce the notation

}̃(l1, l2, l3) := n−
l1+l2+l3

2

∑
i,j

∂l1 h̃1

∂xl1ij

∂l2h2

∂xl2ij

∂l3h3

∂xl3ij
.(S21)

We collect the estimates of }̃(l1, l2, l3) for l1 + l2 + l3 ≤ 4 in the following
two lemmas, whose proofs are postponed to Section F.3.

Lemma F.4. For the first derivative of h̃1h2h3, we have

}̃(1, 0, 0) = −
√
nz
(
(2m′2 +

m2

z
) Tr(GB1) +m2 Tr(G2B1)

)
q(k−1) +O≺(n−

1
2 ),

}̃(0, 1, 0) = b̃11q
(k−2) +O≺(n−

1
2

+4ν),

}̃(0, 0, 1) = O≺(n−
1
2

+4ν).
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Lemma F.5. For higher order derivatives of h̃1h2h3, we have the follow-
ing estimates.
(1). For the second derivative, we have

}̃(2, 0, 0) = d̃1q
(k−1) +O≺(n−

1
2 ),

}̃(1, 1, 0) = b̃21q
(k−2) +O≺(n−

1
2 ),

}̃(0, 2, 0) = O≺(n−
1
2 ).

All the other terms with l3 ≥ 1 can be bounded by O≺(n−
1
2

+4ν).
(2). For the third derivative, we have

}̃(1, 2, 0) = b̃31q
(k−2) +O≺(n−

1
2 ),

}̃(3, 0, 0) = O≺(n−
1
2 ), }̃(0, 3, 0) = O≺(n−

1
2 ),

}̃(2, 1, 0) = O≺(n−1).

All the other terms with l3 ≥ 1 can be bounded by O≺(n−
1
2

+4ν).

(3). For the fourth derivative, all the terms can be bounded by O≺(n−
1
2

+4ν).

With these preparations, using arguments similar to those of (S5), we find
that

√
nEg1q

(k−1) = −m1
√
z

2
E
(κ3

2
d̃1q

(k−1) +
(
b̃11 + κ3b̃21 +

κ4

2
b̃31

)
q(k−2)

)
+
√
nE
(m′1
m1

TrGB1 −m′1TrB1 +m′1TrHΠ1B1

)
q(k−1) +O≺(n−

1
2

+4ν).

In the above, we use (S19) and an identity

m1

2

(
zm1(2m′2 +

m2

z
) +m1 −

1

z

)
= m′1,(S22)

which can be checked from (4.7) and (4.8). Next, observe that

√
nE
(m′1
m1

TrGB1 +m′1TrHΠ1B1 −m′1TrB1

)
q(k−1)

=
√
nE
(
− zm′1TrGB1 +

m′1F1

m1
TrGB1 +m′1TrHΠ1B1 −m′1TrB1

)
q(k−1),

=
m′1
m1

√
nE
(
−m1TrHΞ1B1 + F1TrGB1

)
q(k−1).

In the first step above, we simply use the definition of F1 in (S18). In the
second step, we use the fact zG = HG−I. Note that the remaining derivation
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can be done via replacing A1 with B1 (mutatis mutandis) in the counterpart
for f1. Therefore, we finally get

√
nEg1q

(k−1) = −
√
zE
(m1κ3

4

(
d̃1 + 2

m′1
m1

db1

)
q(k−1) +

(m1

2
b̃11 +m′1b11

)
q(k−2)

+
(m1κ3

2
b̃21 + κ3m

′
1b21 +

m1κ4

4
b̃31 +

κ4m
′
1

2
b31

)
q(k−2)

)
+O≺(n−

1
2

+4ν).

This verifies (S14) in case of α = 1 by recalling the definition in (S12).
The proofs of (S13) and (S14) in case of α = 2 are analogous to those of

(S5) and (S19). We outline the main steps. First observe that

√
nEf2q

(k−1) = E
(
−m2

√
nz
∑
i,j

xij(Ξ1A2)ij′ + F2TrGA2

)
q(k−1),

√
nEg2q

(k−1) = E
(
− m2

2

√
nz
∑
i,j

xij(Ξ2B2)ij′ +
F2

2
TrG2B2

+
zm2 − 1

2z
TrGB2 −m′1TrB2 +m′1TrHΠ1B2

)
q(k−1).

Recall h2 and h3 in (S6) and denote

h1 = (Ξ1A2)ij′ , h̃1 = (Ξ2B2)ij′ .

Analogously to (S11) and (S21), we introduce the notations

h(l1, l2, l3) := n−
l1+l2+l3

2

∑
i,j

∂l1h1

∂xl1ij

∂l2h2

∂xl2ij

∂l3h3

∂xl3ij
,

and h̃(l1, l2, l3) which is defined via replacing h1 by h̃1 in the above definition.
Then we have the estimates for the first order derivatives involving h1

and h̃1.

Lemma F.6. For h, we have

h(1, 0, 0) = −
√
nzym1(TrGA2)q(k−1) +O≺(n−

1
2 ),

h(0, 1, 0) = a12q
(k−2) +O≺(n−

1
2

+4ν),(S23)

h(0, 0, 1) = O≺(n−
1
2

+4ν).

Similarly, for h̃, we have

h̃(1, 0, 0) = −
√
nzy

(
(2m′1 +

m1

z
)TrGB2 +m1 TrG2B2

)
q(k−1) +O≺(n−

1
2 ),

h̃(0, 1, 0) = b̃12q
(k−2) +O≺(n−

1
2

+4ν),

h̃(0, 0, 1) = O≺(n−
1
2

+4ν).
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For the higher order derivatives, we have the following lemma.

Lemma F.7. We have the following estimates in case l1 + l2 + l3 ≥ 2.
(1). For h(l1, l2, l3), we have

h(2, 0, 0) = da2q
(k−1) +O≺(n−

1
2 ),

h(1, 1, 0) = a22q
(k−2) +O≺(n−

1
2

+4ν),

h(1, 2, 0) = a32q
(k−2) +O≺(n−

1
2 ).

All the other terms with l1 + l2 + l3 ≥ 2 can be bounded by O≺(n−
1
2

+4ν).
(2). For h̃(l1, l2, l3) we have

h̃(2, 0, 0) = d̃2q
(k−1) +O≺(n−

1
2 ),

h̃(1, 1, 0) = b̃22q
(k−2) +O≺(n−

1
2 ),

h̃(1, 2, 0) = b̃32q
(k−2) +O≺(n−

1
2 ).

All the other terms with l1 + l2 + l3 ≥ 2 can be bounded by O≺(n−
1
2

+4ν).

The proofs of the above lemmas will be given in Section F.3. The remain-
ing estimates for

√
nEf2q

(k−1) and
√
nEg2q

(k−1) follow the same arguments
as those of (S5) and (S19), and are therefore omitted. As a side note, we
mention an identity (comparable to (S22))

m2

2

(
zym2(2m′1 +

m1

z
) +m2 −

1

z

)
= m′2

used in the derivation of the g2 term.
Lastly, we prove (S15). Recall h2 = Qk−1 and h3 = eit∆. By Lemma C.1,

we have

√
nz

∑
(i,j)∈S(ν)

cijExijq(k−1) =
√
z

∑
(i,j)∈S(ν)

cijE
( 1√

n

∂(h2h3)

∂xij
+
κ3

2n

∂2(h2h3)

∂x2
ij

)
+ ER,

(S24)

where R satisfies that, for any sufficiently small ε > 0 and sufficiently large
K > 0,

|ER| ≤
∑
i,j

E
(
n−

3
2 sup

|xij |≤n−
3
2+ε

∣∣∣cij ∂3(h2h3)

∂x3
ij

∣∣∣+ n−K sup
|xij |∈R

∣∣∣cij ∂3(h2h3)

∂x3
ij

∣∣∣).
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We first show that

|ER| = O≺(n−
1
2

+4ν).(S25)

Similar to the discussion of (S18), the proof boils down to estimate the
third order derivative of h2h3. Using the same proof as (S14) in Lemma
F.3 (given in Section F.1), we observe that in the derivatives of h2h3, any

term containing the derivatives of h3 can bounded by O≺(n−
1
2

+4ν). Thus,
by product rule,

∂3(h2h3)

∂x3
ij

=
∂3h2

∂x3
ij

h3 +O≺(n−
1
2

+4ν) = O≺

(
u(i)v(j) + n−

1
2

+4ν
)
.

The last step is obtained analogously to (S17). We omit the details. To
conclude (S25), we also use cij = O≺(u(i)v(j)) by recalling its definition
(5.7) and the fact that u, v are both unit vectors.

Next, using arguments similar to (S16) and (S17), we get

1√
n

∂(h2h3)

∂xij
=

1√
n

∂h2

∂xij
h3 +O≺(n−

1
2

+4ν) = (k − 1)
√
zcijq

(k−2) +O≺(n−
1
2

+4ν),

(S26)

and

1

n

∂2(h2h3)

∂x2
ij

=
1

n

∂2h2

∂x2
ij

h3 +O≺(n−
1
2

+4ν) = 2
(k − 1)z√

n
sijq

(k−2) +O≺(n−
1
2

+4ν).

(S27)

Plugging (S25)-(S27) into (S24), we obtain (S15). The proof of Lemma E.2
is now complete.

F.1. Proof of Lemma F.2. We start with a simple identity which will be
frequently referred to later. For any deterministic matrixW ∈ R(M+n)×(M+n),
it is elementary to check that

(S28)
( ∂G
∂xij

W
)
ab

= −
√
z
(
Gaj′(GW )ib +Gai(GW )j′b

)
.

We emphasize that both (4.15) and a basic fact (as a consequence of (S1))

q(l) = Qleit∆ = O≺(1) for l ≥ 1

will be applied to bound the error terms throughout the proofs of Lemma
F.2-Lemma F.7.
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For convenience, we denote the blocks of A and B (c.f. (4.26) ) by Ak’s
and Bk’s, i.e.,

A =

(
ω1uu

∗ ω2uv
∗

ω3vu
∗ ω4vv

∗

)
:=

(
A1 A2

A3 A4

)
, B =

(
$1uu

∗ $2uv
∗

$3vu
∗ $4vv

∗

)
:=

(
B1 B2

B3 B4

)
.

(S29)

With the above preparation, we now prove Lemma F.2.

Proof of Lemma F.2. First, by recalling the notations in (S6) and
(S11), and using (S28), we have

}(1, 0, 0) =
1√
n

∑
i,j

( ∂G
∂xij

A1

)
j′i
q(k−1)

= −
√
nz

1

n

∑
i,j

(
Gj′j′(GA1)ii +Gj′i(GA1)j′i

)
q(k−1).

Moreover, by (4.6) and (4.13), we further get

}(1, 0, 0) = −
√
nzm2n(TrGA1)q(k−1) −

√
z

n
(TrGA1G)q(k−1)

= −
√
nzm2(TrGA1)q(k−1) +O≺(n−

1
2 ),(S30)

where the last step follows from the property of trace and (4.20).
Next, using the fact |B(ν)| ≤ Cn4ν together with the definition of cij in

(5.7) and (4.17), we obtain

}(0, 0, 1) =
√
z

∑
(i,j)∈B(ν)

itcij(Ξ1)j′iq
(k−1) = O≺(n−

1
2

+4ν).(S31)

The main task is the estimate of

}(0, 1, 0) =
k − 1√
n

∑
i,j

(Ξ1A1)j′i
∂Q

∂xij
q(k−2).

In light of the expression of ∂Q/∂xij in (S1), by symmetry, we get

}(0, 1, 0) =− (k − 1)
√
z
∑
i,j

(Ξ1A1)j′i
[
2(GAG)j′i −

1

z
(GBG)j′i + (GBG2)j′i + (G2BG)j′i

]
q(k−2)

− (k − 1)
√
z

∑
(i,j)∈B(ν)

(Ξ1A1)j′icijq
(k−2).

(S32)
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The last term on the right hand side of (S32) is bounded by O≺(n−
1
2

+4ν),
by exactly the same estimate of (S31). Now we turn towards the first term
on the right hand side of (S32). We first claim that∑

i,j

(Ξ1A1)j′i(GAG)j′i = Tr(Πl
2 −Πl

1,1)A1Π1A+O≺(n−
1
2 ).(S33)

To derive the above statement, a key observation is that the summation on
the left hand side of (S33) can be written in terms of a trace, with the aid
of the block diagonal matrices Iu and Il in (S2). Indeed, we find∑
i,j

(Ξ1A1)j′i(GAG)j′i = Tr(IlΞ1A1I
uGAGIl) = Tr(GIlG−GIlΠ1)A1GA.

Thus Πl
1,1 and Πl

2 (c.f. (S5) and (S6)) appear naturally in (S33).
To prove (S33), using the expressions of G in (4.5) and A in (S29), we

have that

(Ξ1A)j′i = (
1√
z
X∗G1A1 + (G2 −m2)A3)ji,

(S34)

(GAG)j′i = (
1√
z
X∗G1A1G1 + G2A3G1 +

1

z
X∗G1A2X

∗G1 +
1√
z
G2A4X

∗G1)ji.

(S35)

Expanding the left hand side of (S33) with the above expressions, we shall
show that there are two main terms and all others are negligible.

The first contributing term is∑
i,j

((G2 −m2)A3)ji(G2A3G1)ji = ω2
3Tr((G2 −m2)vu∗G1uv

∗G2)

= ω2
3(u∗G1u)(v∗G2(G2 −m2)v) =

∑
i,j

((Πl
2 −Πl

1,1)A1Π1)j′iAij′ +O≺(n−
1
2 ),

where in the last step we use G2
2 = G′2 and the definition of A in (S29),

followed by (4.17) and (4.20).
The second contributing term is

1

z

∑
i,j

(X∗G1A1)ji(X
∗G1A1G1)ji = ω2

1(u∗G1u)
(1

z
u∗G1XX

∗G1u
)
.

Let v̄ = (0,v)∗ and ū = (u,0)∗ denote the augmented vectors in RM+n.
Note that by (4.20), we first have

ū∗G2ū = u∗G2
1u +

1

z
u∗G1XX

∗G1u = 2m′1 +
m1

z
+O≺(n−

1
2 ).
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Further observe that

u∗G2
1u = ū∗G′ū = m′1 +O≺(n−

1
2 ),

where the last equation follows from (4.14). Putting them together, we con-
clude that

1

z
u∗G1XX

∗G1u = m′1 +
m1

z
+O≺(n−

1
2 ).

As a consequence,

1

z

∑
i,j

(X∗G1A1)ji(X
∗G1A1G1)ji =

∑
i,j

((Πl
2 −Πl

1,1)A1Π1)ij′Aj′i +O≺(n−
1
2 ).

Note that∑
i,j

((Πl
2 −Πl

1,1)A1Π1)ij′Aj′i +
∑
i,j

((Πl
2 −Πl

1,1)A1Π1)j′iAij′ = Tr(Πl
2 −Πl

1,1)A1Π1A.

What remains is to show all other terms in the expansion of the left hand
side of (S33) with (S34) and (S35) are negligible. Let us concentrate on the
following term. All other remaining terms are estimated similarly; we omit
the details.

1√
z

∑
i,j

(X∗G1A1)j′i(G2A3G1)j′i =
ω1ω3√
z

Tr(X∗G1uu
∗G1uv

∗G2)

=
ω1ω3√
z

Tr(v∗G2
2X
∗uu∗G1u) =

ω1ω3√
z

(u∗G1u)(v∗G2
2X
∗u).

In the second step above, we use the fact X∗G1 = G2X
∗ which can be checked

easily via the singular value decomposition. Therefore, using G2
2 = G′2 and

G′ = (G2 − z−1G)/2, together with (4.12) and (4.14), we get that

v∗G2
2X
∗u = (v̄∗

√
zGū)′ =

1

2
√
z
v̄∗Gū +

√
zv̄∗G′ū = O≺(n−

1
2 ).

Hence, we conclude that

1√
z

∑
i,j

(X∗G1A1)j′i(G2A3G1)j′i = O≺(n−
1
2 ).

The proof of (S33) is complete.
Next, analogously, we shall show that∑

i,j

(Ξ1A1)j′i(G
2BG)j′i = Tr(Πl

3 −Πl
2,1)A1Π1B +O≺(n−

1
2 ).(S36)
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A simple calculation using (4.5) and (4.26) yields

(G2BG)j′i =(
1√
z
X∗G2

1B1G1 +
1√
z
G2X

∗G1B1G1 +
1

z
X∗G2

1XB3G1 + G2
2B3G1 +

1

z
X∗G2

1B2X
∗G1

+
1

z
G2X

∗G1B2X
∗G1 +

1

z
3
2

X∗G2
1XB4X

∗G1 +
1√
z
G2

2B4X
∗G1)ji.

(S37)

In a similar way to the discussion of (S33), we expand (Ξ1A)j′i(G
2BG)j′i

using (S34) and (S37). There are only four non-negligible terms in the ex-
pansion.

Recall A1 and B1 in (4.26). The first non-negligible term is

1

z

∑
i,j

(X∗G1A1)j′i(X
∗G2

1B1G1)j′i =
ω1$1

z
(u∗G1u)(u∗G2

1XX
∗G1u).

To estimate u∗G2
1XX

∗G1u in the above, we observe that (via elementary
calculations and the fact G2X

∗ = X∗G1)

ū∗G3ū = u∗G3
1u +

3

z
(u∗G2

1XX
∗G1u).

Moreover, by G3
1 = 1

2G
′′
1 , (4.14) and (4.20), we find

u∗G3
1u =

1

2
ū∗G′′ū =

1

2
m′′1 +O≺(n−

1
2 ),

ū∗G3ū = 2m′′1 +
3

z
m′1 +O≺(n−

1
2 ).

Hence,

(S38) u∗G2
1XX

∗G1u =
z

2
m′′1 +m′1 +O≺(n−

1
2 ).

We conclude that

1

z

∑
i,j

(X∗G1A1)ji(X
∗G2

1B1G1)ji =
1

2

∑
i,j

((Πl
3−Πl

2,1)A1Π1)ij′Bij′+O≺(n−
1
2 ).

Using the fact XG2 = G1X and the same arguments as above, we can show
the second non-negligible term is

1

z

∑
i,j

(X∗G1A1)ji(G2X
∗G1B1G1)ji =

1

2

∑
i,j

((Πl
3−Πl

2,1)A1Π1)ij′Bij′+O≺(n−
1
2 ),
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The third non-negligible term is

1

z

∑
i,j

((G2 −m2)A3)j′i(X
∗G2

1XB3G1)j′i =
1

z
(u∗G1u)(v∗X∗G2

1X(G2 −m2)v)

= ω3$3m1(
m′′2
2

+
m′2
z
− m2

2 + zm2m
′
2

z
) +O≺(n−

1
2 ),

where we used the facts X∗G2
1XG2 = X∗G3

1X and G3
2 = 1

2G
′′
2 , as well as

v̄∗G3v̄ =
3

z
v∗X∗G3

1Xv + v∗G3
2v = 2m′′2 +

3m′2
z

+O≺(n−
1
2 ).

The last non-negligible term can be estimated similarly as∑
i,j

((G2 −m2)A3)ji(G2
2B3G1)ji = ω3$3m1(

m′′2
2
−m2m

′
2) +O≺(n−

1
2 ).

Consequently, we have

1

z

∑
i,j

((G2 −m2)A3)ji(X
∗G2

1XB3G1)ji +
∑
i,j

((G2 −m2)A3)ji(G2
2B3G1)ji

=
∑
i,j

((Πl
3 −Πl

2,1)A1Π1)j′iBj′i +O≺(n−1/2).

Note that the sum of the four contributing terms is extactly

Tr(Πl
3 −Πl

2,1)A1Π1B +O≺(n−
1
2 ).

To wrap up the proof of (S36), it suffices to show all the other terms in the

expansion of
∑

i,j(Ξ1A)j′i(G
2BG)j′i can be bounded by O≺(n−

1
2 ). To see

that, for instance, we focus on

z−3/2
∑
i,j

(X∗G1A1)j′i(X
∗G2

1XB3G1)j′i = ω1$1(z−3/2v∗X∗G2
1XX

∗G1u)(u∗G1u).

Note that

z−3/2v∗X∗G2
1XX

∗G1u = ū∗G3v̄ − u∗(
1√
z
G3

1X +
1√
z
G2

1XG2 +
1√
z
G1XG2

2)v,

= ūG3v̄ − 3√
z
u∗G3

1Xv = ūG3v̄ − 3

2
√
z
ū∗(
√
zG)′′v̄ = O≺(n−

1
2 ),

where in the third step we use G3
1 = 1

2G
′′
1 and in the last step we use (4.20).

Consequently,

z−3/2
∑
i,j

(X∗G1A1)j′i(X
∗G2

1XB3G1)j′i = O≺(n−
1
2 ).
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All the rest terms can be bounded by O≺(n−
1
2 ) analogously; we omit the

details. The proof of (S36) is now complete.
The remaining two terms in (S32) can be estimated the same way as (S33)

and (S36); the details are omitted. We get∑
i,j

(Ξ1A1)j′i(GBG
2)j′i = Tr(Πl

2 −Πl
1,1)A1Π2B +O≺(n−

1
2 ),

∑
i,j

(Ξ1A1)j′i(GBG)ij′ = Tr(Πl
2 −Πl

1,1)A1Π1B +O≺(n−
1
2 ).(S39)

Plugging (S33), (S36) and (S39) into (S32), recalling the definition of a11

in (S9), we conclude that

}(0, 1, 0) = a11q
(k−2) +O≺(n−

1
2

+4ν).(S40)

This completes the proof.

F.2. Proof of Lemma F.3. We use this subsection to prove Lemma F.3.

Proof of Lemma F.3. We first study the second derivatives. By (S11)
and (S2), we have

}(2, 0, 0) =
1

n

∑
i,j

(∂2G

∂x2
ij

A1

)
j′i
q(k−1)

=
2z

n

∑
i,j

((
Gj′j′Gij′ +Gj′iGj′j′

)
(GA1)ii +

(
Gj′j′Gii +Gj′iGj′i

)
(GA1)j′i

)
q(k−1).

First of all, by (4.17) and (4.20), we find that

1

n

∑
i,j

Gj′j′Gii(GA1)j′i =
1

n

∑
i,j

(Π1)ii(Π1)j′j′(Π1A1)j′i +O≺(n−
1
2 ).

It is simple to check that (GA)ii = (G1A1 + z−1/2G1XA3)ii. By (4.15) and
(4.20), we get

1

n

∑
i,j

Gj′j′Gij′(GA1)ii = O≺

(
n−

3
2

∑
i,j

(G1uu
∗ + G1Xvu∗)ii

)
= O≺(n−

1
2 ).

(S41)
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Similarly, we also have

1

n

∑
i,j

Gj′j′Gj′i(GA1)ii = O≺(n−
1
2 ),

1

n

∑
i,j

Gj′iGj′i(GA1)j′i = O≺(n−1).

Putting the above estimates together, and recalling da1 in (S7), we conclude
that

}(2, 0, 0) = da1q
(k−1) +O≺(n−

1
2 ).

Next, the estimation of

}(1, 1, 0) =
k − 1

n

∑
i,j

( ∂G
∂xij

A1

)
j′i

∂Q

∂xij
q(k−2)

follows closely the same steps as the derivation of (S13). By (S28),

}(1, 1, 0) = −(k − 1)
√
z

n

∑
i,j

(
Gj′j′(GA1)ii +Gj′i(GA1)j′i

) ∂Q
∂xij

q(k−2).

(S42)

We shall prove that

1

n

∑
i,j

Gj′j′(GA1)ii
∂Q

∂xij
=

√
z

n

∑
∑

(i,j)∈S(ν)

(Π1A)ii(Π1)j′j′cij +O≺(n−
1
2

+4ν),

(S43)

which will be used several times later. We postpone the proof of (S43) till
the end of this subsection.

Again by (4.20), recalling the definitions of cij in (5.7) and A in (4.26),
we have that

1

n

∑
i,j

Gj′i(GA1)j′i
∂Q

∂xij
= O≺(n−3/2

∑
i,j

Aij′cij) = O≺(n−
1
2 ).(S44)

Inserting (S43) and (S44) back into (S42), by recalling a21 in (S10), we
conclude that

}(1, 1, 0) = a21q
(k−2) +O≺(n−

1
2

+4ν).
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Using a discussion similar to (S14), we also have

}(1, 0, 1) =

√
z

n

∑
(i,j)∈B(ν)

itcij

( ∂G
∂xij

A1

)
j′i
q(k−1) = O≺(n−

1
2

+4ν).

Actually, all the terms containing the derivatives of h3 can be estimated
in the same way. Thus both }(0, 1, 1) and }(0, 0, 2) are also bounded by

O≺(n−
1
2

+4ν). We omit the details.
It remains to estimate

(S45)

}(0, 2, 0) =
1

n

∑
i,j

(Ξ1A1)j′i

(
(k−1)

∂2Q

∂x2
ij

q(k−2)+(k−1)(k−2)
( ∂Q
∂xij

)2
q(k−3)

)
.

The calculation of (S45) is similar to that of (S32) and due to an extra factor
n−1/2 in front, we shall show that }(0, 2, 0) can be bounded by O≺(n−1/2).
We only list the main differences here. We expand the product on the right
hand side of (S45) using the expressions of (Ξ1A1)j′i in (S34), ∂Q/∂xij in
(S1) and ∂2Q/∂x2

ij in (S6).
Most derivations of the items in (S32) can be directly applied to those in

(S45) except three items, which are discussed below. Denote ei with i ∈ [M ]
as the standard basis in RM and fj with j ∈ [N ] as those in RN ,

First, by (4.17) and (4.20),∑
i,j

(X∗G1A1)j′i(X
∗G1A1G1)j′i(X

∗G1A1G1)j′i =
∑
i,j

(e∗jX
∗G1A1ei)(e

∗
jX
∗G1A1G1ei)

2

= O≺

(
n−

3
2

∑
i,j

u3(i)
)

= O≺(n−
1
2 ).(S46)

Second, using (4.17) and the fact that u,v are unit vectors, we get

1√
n

∑
i,j

(X∗G1A1)ji(GAG)j′j′Gii =
m1m

2
2√

n

∑
i,j

(X∗G1A1)jiAj′j′ +O≺(n−
1
2 ),

=
m1m

2
2ω

2
1√

n

∑
i,j

f∗jX
∗G1uu(i)v2(j) +O≺(n−

1
2 )

=
m1m

2
2ω

2
1

n

∑
i,j

u(i)v2(j) +O≺(n−
1
2 )

= O≺(n−
1
2 ).
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Third, we invoke (4.17) to get that
∑

j f
∗
jX
∗G1u =

√
nfX∗G1u = O≺(1),

where f = 1√
n
1. Then it follows that

1√
n

∑
i,j

(X∗G1A1)ji(GAG)iiGj′j′ =
m2

1m2√
n

∑
i,j

(X∗G1A1)jiAii +O≺(n−
1
2 ),

=
m2

1m2ω
2
1√

n

∑
i,j

f∗jX
∗G1uu

3(i) +O≺(n−
1
2 )

=
m2

1m2ω
2
1√

n

(∑
i

u3(i)
)(∑

j

f∗jX
∗G1u

)
+O≺(n−

1
2 )

= O≺(n−
1
2 ).(S47)

Finally, we can conclude that

}(0, 2, 0) = O≺(n−
1
2 ).

This finishes the discussion of the second order derivatives. We continue with
the third derivatives. We start with

(S48)

}(1, 2, 0) = n−
3
2

∑
i,j

(
∂G

∂xij
A1)j′i

(
(k−1)

∂2Q

∂x2
ij

q(k−2)+(k−1)(k−2)
( ∂Q
∂xij

)2
q(k−3)

)
.

Recalling (S28) and (S6), by (4.17) and (4.20), the first term on the right
hand side of (S48) is estimated by

n−
3
2

∑
i,j

(
∂G

∂xij
A1)j′i

∂2Q

∂x2
ij

=
−2z

3
2

n

∑
i,j

Gj′j′(GA1)ii

(
(GAG)iiGj′j′ −

1

2z
(GBG)iiGj′j′ +

1

2
(GBG)iiG

2
j′j′

+
1

2
(G2BG)iiGj′j′ +

1

2
(GBG2)iiGj′j′

)
+O≺(n−

1
2 )

= −2z
3
2

n

∑
i,j

(Π1A)ii(Π1)j′j′sij +O≺(n−1/2).

(S49)

In the last equation above, we recall the definition of sij in (5.8). Further-
more, recalling (S2) and (S28), by (4.20), it is easy to see that the second
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term on the right hand side of (S48) is

n−3/2
∑
i,j

( ∂G
∂xij

A1

)
j′i

( ∂Q
∂xij

)2
q(k−3) = O≺

(
n−3/2

∑
i,j

(A1)iic
2
ij

)
= O≺(n−1).

For the last equation above, we refer to the definition of cij in (5.7). Using
a31 defined in (S11), we hence conclude that

}(1, 2, 0) = a31q
(k−2) +O≺(n−1/2).

Next we study

}(0, 3, 0) = n−
3
2

∑
ij

(Ξ1A1)j′i

(
(k − 1)

∂3Q

∂x3
ij

q(k−2) + 3
(k − 1)!

(k − 3)!

∂2Q

∂x2
ij

∂Q

∂xij
q(k−3)

+
(k − 1)!

(k − 4)!

( ∂Q
∂xij

)3
q(k−4)

)
.

We briefly argue that }(0, 3, 0) is bounded by O≺(n−
1
2 ), using a discussion

similar to those of }(0, 1, 0) in (S32) and }(0, 2, 0) in (S45).
Recalling (S1) and (S6), it is easy to see that

n−
3
2

∑
i,j

(Ξ1A1)j′i
∂2Q

∂x2
ij

∂Q

∂xij
= O≺(n−1

∑
i,j

u(i)v3(j)) = O≺(n−
1
2 ).

Similarly, by (S1) and (S7), it can also be shown that

n−
3
2

∑
i,j

(Ξ1A1)j′i

( ∂Q
∂xij

)3
= O≺(n−

1
2

∑
i,j

u3(i)v3(j)) = O≺(n−
1
2 ),

n−
3
2

∑
i,j

(Ξ1A1)j′i
∂3Q

∂x3
ij

= O≺(n−
1
2 ).

This completes the discussion of }(0, 3, 0). The same arguments can be ap-
plied to show that

}(2, 1, 0) = n−
3
2

∑
i,j

(∂2G

∂x2
ij

A1

)
j′i

∂Q

∂xij
q(k−2) = O≺(n−1

∑
i,j

u2(i)v2(j)) = O≺(n−1).

and

}(3, 0, 0) = n−
3
2

∑
i,j

(∂3G

∂x3
ij

A1

)
j′i
q(k−1) = O≺(n−3/2

∑
i,j

(A1)j′i) = O≺(n−
1
2 )
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by using the expressions (S2) and (S3) respectively.
For all the rest of the items containing the derivatives of h3, they can be

easily estimated using a discussion similar to (S14).
Finally, using (S2)-(S8), (S1), (S28) and (4.17), all the fourth order deriva-

tives can bounded by O≺(n−
1
2 ). The discussion is similar to that of (S45);

we omit further details here. This concludes our proof.

Proof of (S43). We split the left hand side of (S43) as the sum of the
following three items

1

n

∑
i,j

(Gj′j′ −m2)(GA1)ii
∂Q

∂xij
,

1

n

∑
i,j

m2(Ξ1A1)ii
∂Q

∂xij
,

1

n

∑
i,j

m1m2(A1)ii

( ∂Q
∂xij

−
√
nzcij

)
.

First of all, by (4.20) and (S1), we have

1

n

∑
i,j

(Gj′j′ −m2)(GA1)ii
∂Q

∂xij
= O≺

(
n−1

∑
(i,j)∈S(ν)

u3(i)v(j)
)

= O≺(n−
1
2 ).

Similarly, we also have

1

n

∑
i,j

m2(Ξ1A1)ii
∂Q

∂xij
=
m2ω1

n

∑
i,j

e∗iΞ1uu(i)
∂Q

∂xij

= O≺(n−1
∑
i,j

u(i)2v(j)) = O≺(n−
1
2 ).

Furthermore, using a discussion similar to that of (S47), we get

1

n

∑
i,j

m1m2(A1)ii

( ∂Q
∂xij

−
√
nzcij

)
= O≺(n−

1
2

∑
i

u3(i)) = O≺(n−
1
2 ),

where we apply the fact that

(GAG)j′i −m1m2Aj′i = O≺

(u(i)√
n

)
.

Summing up the above three estimates, we can conclude the proof of (S43).

F.3. Proofs of Lemmas F.4-F.7. In this subsection, we will prove Lem-
mas F.4-F.7. The proofs are analogous to those of Lemma F.2 and Lemma
F.3; we only outline the main steps.
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We record a basic identity for later estimates. For any deterministic matrix
W ∈ R(M+n)×(M+n), it is elementary to check that
(S50)(∂G2

∂xij
W
)
ab

= −
√
z(G2

aj′(GW )ib+G
2
ai(GM)j′b+Gaj′(G

2W )ib+Gai(G
2W )j′b).

Proof of Lemma F.4. Recalling h̃1 in (S20), by a discussion similar to
(S30), we get

}̃(1, 0, 0) =
1√
n

∑
i,j

∂h̃1

∂xij
h2h3 =

1√
n

∑
i,j

(∂G2

∂xij
B1

)
j′i
q(k−1)

= −
√
nz
(
(2m′2 +

m2

z
)Tr(GB1) +m2Tr(G2B1)

)
q(k−1) +O≺(n−

1
2 ).

In the last step above, we use (S50), (4.17) and (4.20). Next, we turn towards
to the term

}̃(0, 1, 0) =
1√
n

∑
i,j

h̃1
∂h2

∂xij
h3 =

(k − 1)

n

∑
i,j

(Ξ2B1)j′i
∂Q

∂xij
q(k−2),(S51)

which will be estimated following exactly the same steps as those of (S13).
Observe that

(Ξ2B)j′i =
(

(
1√
z
X∗G2

1 +
1√
z
G2X

∗G1)B1+(
1

z
X∗G2

1X+G2
2−2m′2−

m2

z
)B3

)
j′i
.

By (S1), after expanding the product on the right hand side of (S51), we
find the following estimates.

1√
n

∑
i,j

(Ξ2B1)j′i(GAG)j′i = Tr(Πl
3 −Πl

1,2)B1Π1A+O≺(n−
1
2 ),

1√
n

∑
i,j

(Ξ2B1)j′i(GBG)j′i = Tr(Πl
3 −Πl

1,2)B1Π1B +O≺(n−
1
2 ),

1√
n

∑
i,j

(Ξ2B1)j′i(G
2BG)j′i = Tr(Πl

4 −Πl
2,2)B1Π1B +O≺(n−

1
2 ),

1√
n

∑
i,j

(Ξ2B1)j′i(GBG
2)j′i = Tr(Πl

3 −Πl
1,2)B1Π2B +O≺(n−

1
2 ).

Putting these estimates together and invoking b̃11 in (S9), we have

}̃(0, 1, 0) = b̃11q
(k−2) +O≺(n−

1
2

+4ν).

Lastly, }̃(0, 0, 1) can be estimated using a discussion similar to (S14). We
can therefore conclude our proof.
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The proof of Lemma F.5 follows along the exact lines of Lemma F.3 with
minor changes. We only sketch it below.

Proof of Lemma F.5. First of all, by (4.20) and (S5), using a discus-
sion similar to (S15), we have that

}̃(2, 0, 0) =
1

n

∑
i,j

∂2h̃1

∂x2
ij

h2h3 =
1

n

∑
i,j

(∂2G2

∂x2
ij

B1

)
j′i
q(k−1) = d̃1q

(k−1) +O≺(n−
1
2 ),

Second, following the same steps in (S42), together with (S50) and (S1),
we find that

}̃(1, 1, 0) =
1

n

∑
i,j

∂h̃1

∂xij

∂h2

∂xij
h3 =

k − 1

n

∑
i,j

(∂2G

∂x2
ij

B1

)
j′i

∂Q

∂xij
q(k−2) = b̃21q

(k−2) +O≺(n−
1
2 ).

Third, the same arguments of (S17) using (S50) and (S6) yield

}̃(1, 2, 0) = n−
3
2

∑
i,j

∂h̃1

∂xij

∂2h2

∂x2
ij

h3 = b̃31q
k−2 +O≺(n−1/2).

For the rest of the items, we can apply discussions similar to those of the
corresponding items from Lemma F.3. We omit the details here.

Lemma F.6 is an analogue of Lemma F.2 and F.4 for the matrices A2 and
B2; the proof is analogous.

Proof of Lemma F.6. Recall (S28). Using a discussion similar to that
of (S30), by (4.17) and (4.20), we find that

h(1, 0, 0) =
1√
n

∑
i,j

∂h1

∂xij
h2h3 =

1√
n

∑
i,j

( ∂G
∂xij

A2

)
ij′
q(k−1)

= −
√
nz

1

n

∑
i,j

(
Gii(GA2)j′j′ +Gij′(GA2)ij′

)
q(k−1)

= −
√
nzym1n(TrGA2)q(k−1) −

√
z√
n

(TrGA∗2G)q(k−1)

= −
√
nzym1(TrGA2)q(k−1) +O≺(n−

1
2 ),
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where we recall that y = M
n . Similarly, using (S50), we also have

h̃(1, 0, 0) =
1√
n

∑
i,j

∂h̃1

∂xij
h2h3 =

1√
n

∑
i,j

(∂G2

∂xij
B2

)
ij′
q(k−1)

= −
√
nz

1

n

∑
i,j

(
G2
ii(GB2)j′j′ +Gii(G

2B2)j′j′
)
q(k−1) +O≺(n−

1
2 )

= −
√
nzy

(
(2m′1 +

m1

z
)(TrGB2) +m1TrG2B2

)
q(k−1) +O≺(n−

1
2 ),

Next, we estimate

h(0, 1, 0) =
k − 1√
n

∑
i,j

(Ξ1A2)ij′
∂Q

∂xij
q(k−2).

Recall the expression of ∂Q/∂xij in (S1). As seen in the discussion below
(S32), the key observation is that∑

i,j

(Ξ1A2)ij′(GAG)ij′ = Tr(GIuG−GIuΠ1)A2GA

Thus we shall prove∑
i,j

(Ξ1A2)ij′(GAG)ij′ = Tr(Πu
2 −Πu

1,1)A2Π1A+O≺(n−
1
2 ).

The proof follows from

(Ξ1A2)ij′ = ((G1 −m1)A2 + z−1/2G1XA4)ij

and exactly the same arguments as (S33). Likewise, we also get

1√
n

∑
i,j

(Ξ1A2)ij′(GBG)ij′ = Tr(Πu
2 −Πu

1,1)A2Π1B +O≺(n−
1
2 ),

1√
n

∑
i,j

(Ξ1A2)ij′(G
2BG)ij′ = Tr(Πu

3 −Πu
2,1)A2Π1B +O≺(n−

1
2 ),

1√
n

∑
i,j

(Ξ1A2)ij′(GBG
2)ij′ = Tr(Πu

2 −Πu
1,1)A2Π2B +O≺(n−

1
2 ).

Putting the above estimates together and recalling a12 below (S9), we fin-
ish the computation for (S23). The other term h̃(0, 1, 0) can be estimated
analogously by noting

(Ξ2B2)ij′ = ((G2
1 +

1

z
G1XX

∗G1−2m′1−
m1

z
)B2+(

1√
z
G2

1X+
1√
z
G1XG2)B4)ij .
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Finally, h(0, 0, 1) and h̃(0, 0, 1) can be estimated using a discussion similar
to that of (S14). The details are omitted.

The remaining part of this section is the proof of Lemma F.7, which is an
analogue of Lemma F.3 and F.5 for the matrices A2 and B2.

Proof of Lemma F.7. We shall outline our computation on the domi-
nating terms. The discussions of the negligible terms are similar to those in
Lemma F.3 and F.5, and are therefore omitted.

Recall (S2). Using the same proof of (S15), we first get

h(2, 0, 0) =
1

n

∑
i,j

∂2
h1

∂x2
ij

h2h3 =
1

n

∑
i,j

(∂2G

∂x2
ij

A2

)
ij′
q(k−1)

=
2z

n

∑
i,j

GiiGj′j′(GA2)ij′q
(k−1) +O≺(n−

1
2 )

=
2z

n

∑
i,j

(Π1)ii(Π1)j′j′(Π1A2)ij′q
(k−1) +O≺(n−

1
2 )

= da2q
(k−1) +O≺(n−

1
2 ).

Likewise, applying (S5), we find that

h̃(2, 0, 0) =
1

n

∑
i,j

∂2
h̃1

∂x2
ij

h2h3 =
1

n

∑
i,j

(∂2G2

∂x2
ij

B2

)
ij′
q(k−1) = d̃2q

(k−1) +O≺(n−
1
2 ).

Next, recall (S28) and (S1). By a discussion similar to that of (S42), we
conclude that

h(1, 1, 0) =
1

n

∑
i,j

∂h1

∂xij

∂h2

∂xij
h3

= −(k − 1)z√
n

∑
i,j

(Π1)ii(Π1A2)j′j′cijq
(k−2) +O≺(n−

1
2

+4ν)

= a22q
(k−2) +O≺(n−

1
2

+4ν).

Similarly, recalling (S50), we have

h̃(1, 1, 0) =
1

n

∑
i,j

∂h̃1

∂xij

∂h2

∂xij
h3 = b̃22q

(k−2) +O≺(n−
1
2 ).
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Finally, recall (S4) and (S6). The same arguments as (S49) yield

h(1, 2, 0) = n−
3
2

∑
i,j

∂h1

∂xij

∂2h2

∂x2
ij

h3 = a32q
(k−2) +O≺(n−

1
2 ),

h̃(1, 2, 0) = n−
3
2

∑
i,j

∂h̃1

∂xij

∂2h2

∂x2
ij

h3 = b̃32q
(k−2) +O≺(n−

1
2 ).

This concludes our proof.

G. Proof of Theorems 2.9. In this section, we prove Theorem 2.9.
The proof follows along the same lines of the proof of Theorem 2.3, and is
summarized as follows. First, by Lemma 4.8, we reduce the problem to study
the quantity Q defined below. After necessary notations are introduced, as
done in the beginning of Section 5, it suffices to prove Proposition G.1, which
is an analogue of Proposition 5.1. The proof of Proposition G.1 essentially
relies on a recursive estimate presented in Proposition G.2. Thus the main
goal of this section is to prove Proposition G.2.

Let z = (z1, · · · , zr) denote a vector with all the entries zβ ∈ So. Following
the discussion in the beginning of Section 5, with a slight abuse of notation,
we introduce a few definitions. Let

Q ≡ Q(z) :=
√
n

r∑
β=1

(
Tr(Ξ1(zβ))ARβ + Tr(Ξ′1(zβ))BR

β

)
.

Denote the index set as

B(ν) :=
r⋃

β=1

Bβ(ν),

where Bβ(ν) is defined as

Bβ(ν) :=
{

(i, j) ∈ [M ]× [n] : |uβ(i)| > n−ν , |vβ(j)| > n−ν
}
.

Since r is fixed and all the vectors uβ and vβ for β ∈ [r] are unit vectors, it
is easy to conclude that |B(ν)| ≤ Cn4ν for some constant C > 0.

For β ∈ [r], invoke ∆d(zβ) by plugging zβ in (5.5). We also introduce the
random variable

∆r(zβ) :=
√
nzβ

∑
(i,j)∈B(ν)

xij(cβ)ij ,
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where (cβ)ij ≡ (cβ(zβ))ij is defined by inserting zβ into cij in (5.7). Similarly,
we denote (sβ)ij ≡ (sβ(zβ))ij by plugging zβ into sij in (5.8). Let Cβ and
Sβ be M × n matrices with entries (cβ)ij and (sβ)ij respectively. Denote

∆r ≡ ∆r(z) :=
r∑

β=1

∆r(zβ), ∆d ≡ ∆d(z) :=
r∑

β=1

∆d(zβ),

and ∆ = ∆d + ∆r. Furthermore, we denote

(S1) Q = Q−∆.

Note VE(zβ) is defined in (5.10) by plugging zβ. Set

VE(z) =
r∑

β=1

VE(zβ).

Then we define the function

V ≡ V (z)

= VE(z) + 2
κ3√
n

Tr
(

(

r∑
β=1

zβSβ)(

r∑
β=1

√
zβCβ)∗

)
+
κ4

n
Tr
(

(

r∑
β=1

zβSβ)(

r∑
β=1

zβSβ)∗
)

+
∑

(i,j)∈S(ν)

( r∑
β=1

√
zβ(cβ)ij

)2
.

Recall pβ = p(dβ) in (2.1). Let z0 := (p1, . . . , pr).

Proposition G.1. Under the assumptions of Theorem 2.9, we have that
Q(z0) and ∆(z0) are asymptotically independent. Furthermore,

Q(z0) ' N (0, V (z0)) .

Theorem 2.9 follows from Proposition G.1. The arguments are the same
as the proof of Theorem 2.3 in Section 5. Again, the final presentation of the
results in Theorem 2.9 are obtained by plugging the values pβ for 1 ≤ β ≤ r
using the continuity of Green functions and performing tedious calculations.
We omit the details.

Similar to the discussion of Proposition 5.1, to prove Proposition G.1, it
suffices to establish the following recursive estimates. It is an analogue of
Proposition 5.2.
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Proposition G.2. Suppose the assumptions of Theorem 2.9 hold. Let
zβ = pβ + in−C and z0β = pβ for all β ∈ [r]. We have

EQ(zβ)eit∆(z0β) = O≺(n−1/2+ν),

and for any fixed integer k ≥ 2,

EQk(zβ)eit∆(z0β) = (k − 1)V EQk−2(zβ)eit∆(z0β) +O≺(n−1/2+ν).

H. Proof of Proposition G.2. Proposition G.2 can be proved in a
way similar to Proposition 5.2. Recall from Section E that the proof of
Proposition 5.2 is based on Lemma E.1 and Lemma E.2. We present the
analogues of these two lemmas and their proofs in the following two steps. We
shall only outline the key estimates and focus on discussing the differences.

Step 1. In the first step, we will rewrite Q in (S1). Recall (S2) and for each
β ∈ [r], denote

Aβ,1 := ARβ I
u, Aβ,1 := ARβ I

l,

Bβ,1 := BR
β I

u, Bβ,1 := BR
β I

l.

Furthermore, for α = 1, 2, we define

fβ,α := −mα(zβ)Tr[H(zβ)Ξ1(zβ)Aβ,α] + Fβ,αTr[G(zβ)Aβ,α],

and

gβ,α := −1

2
mα(zβ)Tr[H(zβ)Ξ2(zβ)Bβ,α] +

Fβ,α
2

Tr[G2(zβ)Bβ,α]

+
1

2
(mα(zβ)− 1

zβ
)Tr[G(zβ)Bβ,α]−m′α(zβ)Tr[Bβ,α(zβ)]

+m′α(zβ)Tr[H(zβ)Π1(zβ)Bβ,α(zβ)],

where Fβ,α is defined in (S18) with z = zβ. Finally, for β ∈ [r], we denote

(S1) Qβ :=
√
n
∑
α=1,2

(fβ,α + gβ,α) +
√
nzβ

∑
(i,j)∈S(ν)

xij(cβ)ij −∆d(zβ).

Lemma H.1. Under the assumptions of Proposition G.1, we have

Q =

r∑
β=1

Qβ.(S2)
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Indeed, Lemma H.1 is the analogue of Lemma E.1, and its proof is also a
straightforward extension of the rank one case. We omit the details here.

As a consequence, to prove Proposition G.2, it suffices to study the fol-
lowing

EQkeit∆ =
√
n

r∑
β=1

2∑
α=1

E
(
fβ,α + gβ,α

)
Qk−1eit∆

+
√
n

∑
(i,j)∈S(ν)

(

r∑
β=1

√
zβ(cβ)ij)ExijQk−1eit∆ −∆dEQk−1eit∆.(S3)

Step 2. In the second step, we will use the cumulant expansion to estimate
the items on the right hand side of (S3) and prove the analogue of Lemma
E.2.

Observe that for the rank r case, we have

∂Q

∂xij
=

r∑
β=1

∂Qβ
∂xij

.(S4)

The estimates of the cumulant expansion for the terms in (S3) follow along
the exact lines of Lemma F.2-F.7, together with linearity of expectation.
The main difference is that we will have cross terms from ARβ1A

R
β2

, BR
β1
BR
β2

and ARβ1B
R
β2

for β1, β2 ∈ [r]. However, by the orthogonality of the singular

vectors, it is easy to check (via the definitions of ARβ and BR
β in (4.26)) that

ARβ1A
R
β2 = BR

β1B
R
β2 = ARβ1B

R
β2 = 0

if β1 6= β2. Consequently, these cross terms essentially make no contribution.
We specify one example here. In the proof of the analogue of (S13), we shall
encounter an term of the following form

1√
n

∑
i,j

(
Ξ1(zβ)Aβ,1

)
j′i

∂Q

∂xij
Qk−2eit∆ =

1√
n

r∑
γ=1

∑
i,j

(
Ξ1(zβ)Aβ,1

)
j′i

∂Qγ
∂xij

Qk−2eit∆.

Applying (S1) for each ∂Qγ/∂xij , by (4.17) and orthogonality of the singular
vectors, we find the only contributing part is

1√
n

∑
i,j

(
Ξ1(zβ)Aβ,1

)
j′i

∂Qβ
∂xij

Qk−2eit∆

and what remains is exactly the same as the proof of (S13). This explains
why most quantities appearing in Theorem 2.9 and its proof are similar to,
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and most of time are simply the sum of those in the proof of Theorem 2.3.
In the following discussion, we shall concentrate on these cross terms from
different singular values and vectors, and show they are actually negligible
due to the orthogonality of singular vectors.

We first introduce some notations. Recall (S7). For β ∈ [r], we denote
daβ,α, d

b
β,α, d̃β,α by replacing z with zβ and Aα, Bα with Aβ,α, Bβ,α (α = 1, 2)

correspondingly. We also define aβ,1α, bβ,1α, b̃β,1α for α = 1, 2 in the same
fashion using (S9). Next, we denote

aβ,21 := −
(k − 1)zβ√

n

∑
(i,j)∈S(ν)

(
Π1(zβ)

)
j′j′

(
Π1(zβ)Aβ,1

)
ii

(
r∑

γ=1

√
zγCγ)ij ,

b̃β,21 := −
(k − 1)zβ√

n

∑
(i,j)∈S(ν)

[(
Π1(zβ)

)
j′j′

(
Π2(zβ)Bβ,1

)
ii

+
(
Π2(zβ)

)
j′j′

(
Π1(zβ)Bβ,1

)
ii

]

×
( r∑
γ=1

√
zγCγ

)
ij
,

and define aβ,22, b̃β,22 analogously. Further, we denote

aβ,31 := −
2(k − 1)z

3/2
β

n

∑
i,j

(
Π1(zβ)

)
j′j′

(
Π1(zβ)Aβ,1

)
ii

(

r∑
γ=1

zγSγ)ij ,

b̃β,31 = −
2(k − 1)z

3/2
β

n

∑
i,j

[(
Π1(zβ)

)
j′j′

(
Π2(zβ)Bβ,1

)
ii

+
(
Π2(zβ)

)
j′j′

(
Π1(zβ)Bβ,1

)
ii

]
×
( r∑
γ=1

zγSγ
)
ij
,

and define aβ,32, b̃β,32 analogously. Finally, we denote

aβ,0α := aβ,1α + κ3aβ,2α +
κ4

2
aβ,3α,

bβ,0α :=
mα(zβ)

2
b̃β,1α +m′α(zβ)bβ,1α +

κ3mα(zβ)

2
b̃β,2α

+ κ3m
′
α(zβ)bβ,2α +

κ4mα(zβ)

4
b̃β,3α +

κ4m
′
α(zβ)

2
bβ,3α.

We adopt the notation
q(l) = Qleit∆.

With these preparations, we present the following analogue of Lemma E.2.
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Lemma H.2. Under the assumptions of Proposition G.2, for each β ∈ [r]
and α = 1, 2, we have

√
nEfβ,αq(k−1) = −√zβmα(zβ)E

(κ3

2
daβ,αq

(k−1) + aβ,0αq
(k−2)

)
+O≺(n−

1
2

+4ν),

(S5)

√
nEgβ,αq(k−1) = −√zβ E

(κ3

4

(
mα(zβ)d̃β,α + 2m′α(zβ)dbβ,α

)
q(k−1) + dβ,0αq

(k−2)
)

+O≺(n−
1
2

+4ν).

In addition, we have

√
n

∑
(i,j)∈S(ν)

(
r∑

β=1

√
zβ(cβ)ijExijq(k−1) = (k − 1)

[ ∑
(i,j)∈S(ν)

( r∑
β=1

√
zβ(cβ)ij

)2
+

κ3√
n

∑
(i,j)∈S(ν)

( r∑
β=1

(zβsβ)ij
)( r∑

β=1

√
zβ(cβ)ij

)]
Eq(k−2) +O≺(n−

1
2

+4ν).

Similar to the proof of Proposition 5.2, Proposition G.2 follows immedi-
ately from Lemma H.1 and H.2. We omit the details here.

Next, we turn to the proof of Lemma H.2. We will only focus our discussion
on the term

√
nEfβ,1q(k−1) and the other terms can be estimated likewise.

Using a discussion similar to (S5), for each fixed β ∈ [r], we have

√
nEfβ,1q(k−1) = E

(
−m1

√
nzβ

∑
i,j

xij
(
Ξ1(zβ)Aβ,1

)
j′i

+
√
nF1Tr

(
G(zβ)Aβ,1

))
q(k−1).

As seen in the proof of (S13), we need the following estimates which are
analogues of those in Lemma F.2 and F.3. We adopt the notations in (S11)
by denoting

h1 =
(
Ξ1(zβ)Aβ,1

)
j′i
, h2 = Qk−1, h3 = eit∆.

Lemma H.3. For the derivatives of h1h2h3, we have

}(1, 0, 0) = −√nzβm2(zβ) Tr
(
G(zβ)Aβ,1

)
q(k−1) +O≺(n−1/2),(S6)

}(0, 1, 0) = aβ,11q
(k−2) +O≺(n−1/2),(S7)

}(2, 0, 0) = daβ,1q
(k−1) +O≺(n−1/2),

}(1, 1, 0) = aβ,21q
(k−2) +O≺(n−1/2),

}(1, 2, 0) = aβ,31q
(k−2) +O≺(n−1/2).

Furthermore, all the other terms }(l1, l2, l3) for l1+l2+l3 ≤ 4 can be bounded
by O≺(n−1/4+4ν).
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It is easy to see that (S5) follows directly from Lemma H.3. Thus the final
task is to prove Lemma H.3. In the proof, we will use the orthogonality of
the singular vectors, that is, for β1 6= β2,

(S8) 〈uβ1 ,uβ2〉 = 0, 〈vβ1 ,vβ2〉 = 0.

Proof of Lemma H.3. First of all, (S6) can be estimated similarly as
(S30). The other four dominating terms can be analyzed analogously and
we shall only focus on the estimate of (S7). Observe that

(S9) }(0, 1, 0) =
1√
n

∑
i,j

h1
∂h2

∂xij
h3 =

(k − 1)√
n

∑
i,j

(
Ξ1(zβ)Aβ,1

)
j′i

∂Q

∂xij
qk−2.

Plugging in (S4), we have

}(0, 1, 0) =
(k − 1)√

n

r∑
γ=1

∑
i,j

(
Ξ1(zβ)Aβ,1

)
j′i

∂Qγ
∂xij

Qk−2eit∆,

where by (S1),

∂Qγ
∂xij

= −√nzγ
∑

l1,l2∈{i,j′}
l1 6=l2

[(
G(zβ)ARγG(zβ)

)
l1l2
− 1

2zγ

(
G(zβ)BR

γ G(zβ)
)
l1l2

+
1

2

∑
(a1,a2)∈P(2,1)

(
Ga1(zβ)BR

γ G
a2(zβ)

)
l1l2

]
− 1
(

(i, j) ∈ B(ν)
)√

nzγ(Cγ)ij .

(S10)

Using a discussion similar to (S13), we have that

(k − 1)√
n

∑
i,j

(
Ξ1(zβ)Aβ,1

)
j′i

∂Qβ
∂xij

q(k−2) = aβ,11q
(k−2) +O≺(n−1/2).

Therefore, it suffices to show that for γ 6= β,

(S11)
1√
n

∑
i,j

(
Ξ1(zβ)Aβ,1

)
j′i

∂Qγ
∂xij

q(k−2) = O≺(n−
1
2 ).

To prove this, we shall argue in a similar way to (S13) by expanding the
product above using (S10). We start with∑

i,j

(
Ξ1(zβ)Aβ,1

)
j′i

(
G(zβ)ARγG(zβ)

)
j′i
.
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Recall (S34) and (S35). By (4.20) and (S8), we have∑
i,j

(
(G2(zβ)−m2(zβ)

)
Aβ,3)j′i(G2Aγ,3G1)j′i

= ωβ,3ωγ,3Tr
((
G2(zβ)−m2(zβ)

)
vβu

∗
βG1(zβ)uγv

∗
γG2(zβ)

)
= ωβ,3ωγ,3

(
u∗βG1(zβ)uγ

)(
v∗γG2

(
G2(zβ)−m2(zβ)

)
vβ

)
= O≺(n−

1
2 ),

where the coefficients ωβ,3 are defined using the block decomposition of ARβ
as in (S29). We can estimate the other terms in the expansion (in light of
(S34) and (S35)) using similar discussions. Hence, we conclude that∑

i,j

(
Ξ1(zβ)Aβ,1

)
j′i

(
G(zβ)ARγG(zβ)

)
j′i

= O≺(n−1/2).

Likewise, we can show that each of the following terms∑
i,j

(
Ξ1(zβ)Aβ,1

)
j′i

(
G(zβ)ARγG(zβ)

)
ij′
,
∑
i,j

(
Ξ1(zβ)Aβ,1

)
j′i

(
G(zβ)2BR

γ G(zβ)
)
j′i
,

∑
i,j

(
Ξ1(zβ)Aβ,1

)
j′i

(
G2(zβ)BR

γ G(zβ)
)
ij′
,
∑
i,j

(
Ξ1(zβ)Aβ,1

)
j′i

(
G(zβ)BR

γ G
2(zβ)

)
j′i
,

∑
i,j

(
Ξ1(zβ)Aβ,1

)
j′i

(
G(zβ)BR

γ G
2(zβ)

)
ij′

can be bounded by O≺(n−1/2). In view of (S10), we conclude the proof of
(S11). This completes our proof.
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(a) Gaussian noise
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(b) Two-Point noise

Fig S2: Mean-Variance Discussion. In both of the figures, we plot the mean
function a(d) in the upper panel for y = 0.1, 0.5, 5, 10 respectively for a se-
quence of values of d lie between 3 and 13. In the lower panel, we plot the
standard deviation of the fluctuation correspondingly. Recall the definitions
in (2.3) and (2.4). The standard deviation is

√
4θ(d)2 + VE(d) for the Gaus-

sian noise and
√

4θ(d)2 + VE(d) + 4
√
yθ(d)2/(

√
2d)− 3yθ(d)2/(2d2) for the

Two-Point noise. We choose the true right singular vector to be f1 and left
singular vector to be 1M/

√
M . Hence for the Two-Point noise, we need to

add a part depending on κ3 = 1/
√

2 and κ4 = −3/2.
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